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For low density gases the validity of the Boltzmann transport equation is well estab-
lished. The central object is the one-particle distribution function, f , which in the
Boltzmann-Grad limit satisfies the Boltzmann equation. Grad and, much refined, Cer-
cignani argue for the existence of this limit on the basis of the BBGKY hierarchy for
hard spheres. At least for a short kinetic time span, the argument can be made mathe-
matically precise following the seminal work of Lanford. In this article a corresponding
program is undertaken for weakly nonlinear, both discrete and continuum, wave equa-
tions. Our working example is the harmonic lattice with a weakly nonquadratic on-site
potential. We argue that the role of the Boltzmann f -function is taken over by the
Wigner function, which is a very convenient device to filter the slow degrees of free-
dom. The Wigner function, so to speak, labels locally the covariances of dynamically
almost stationary measures. One route to the phonon Boltzmann equation is a Gaussian
decoupling, which is based on the fact that the purely harmonic dynamics has very good
mixing properties. As a further approach the expansion in terms of Feynman diagrams
is outlined. Both methods are extended to the quantized version of the weakly nonlinear
wave equation.

The resulting phonon Boltzmann equation has been hardly studied on a rigorous
level. As one novel contribution we establish that the spatially homogeneous stationary
solutions are precisely the thermal Wigner functions. For three phonon processes such
a result requires extra conditions on the dispersion law. We also outline the reasoning
leading to Fourier’s law for heat conduction.

KEY WORDS: Kinetic limit, Feynman diagrams, Wigner function, H-theorem,
transport equations.

1. GOALS AND INTRODUCTION

Dielectric crystals, as Si and GaAs, have their electronic bands completely filled
and separated by an energy gap from the conduction band. Therefore electronic
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energy transport is suppressed and the dominant contribution to heat transport is
due to the vibrations of the atoms around their mechanical equilibrium position.
Below room temperature these deviations are small, typically only a few percent
of the lattice constant, hence by necessity weakly anharmonic. As envisioned by
R. Peierls in 1929(1), the obvious theoretical option is to regard the anharmonicities
as a, in a certain sense, small perturbation to the perfectly harmonic crystal, which
at the very end leads to a kinetic description of an interacting “gas of phonons” in
terms of a nonlinear Boltzmann transport equation. The actual computation of the
thermal conductivity of dielectric crystals is then based on the phonon Boltzmann
equation. Through the work of many, for example see [2–5], it has become ap-
parent that such a program can be made to work resulting in a reliable prediction
over a considerable temperature range. Only recently the kinetic description has
been augmented by molecular dynamics, which numerically solves the classical
equations of motion, see for example(6). To determine the thermal conductivity
one computes either the Green-Kubo formula in an equilibrium system at a fixed
temperature or the average energy flux in the steady state with a temperature
difference imposed at the boundaries.

In this note I focus on the step from the weakly anharmonic lattice dynamics
to the kinetic equation. As an aside, I discuss a few basic properties of the phonon
Boltzmann equation, mostly to provide some indication on the physics which
persists on the kinetic level but also to advertise an evolution equation which
apparently has received little attention.

If the goal is to compute the thermal conductivity of real crystals, the deriva-
tion of the Boltzmann equation is considered as a minor issue, where the emphasis
varies from author to author. Much more relevant is to have reliable information
on the lattice structure, on the phonon dispersion law, and on the lowest order
anharmonic elastic constants. Furthermore, on the kinetic level the conductivity is
determined through the inverse of the linearized collision operator, which cannot
be computed by hand. Hence suitable approximation schemes had to be developed.
I will have nothing to say on these topics.

On a qualitative level kinetic theory provides a rather simple picture for the
temperature dependence of the thermal conductivity, κ(T ). At “high” temperatures
a semiclassical approximation suffices, which predicts κ(T ) = θh/T with some
temperature independent coefficient θh. At “low” temperatures the quantization of
lattice vibrations must be taken into account. The total number of phonons then
equals

∫
d3k(eω(k)/kBT − 1)−1 which reflects the freezing of the number of energy

carriers as T → 0. On the other hand also momentum nonconserving collisions
become rare, resulting in a phonon mean free path which diverges as T → 0. This
latter effect dominates and yields the prediction κ(T ) = eθl/T , θl > 0, as T → 0.
Experimentally such a behavior is masked by the finite size of the sample and
only over a narrow temperature range the exponential increase in 1/T can be
seen. A crucial point in the experiment is to manufacture a crystal which has
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Fig. 1. Thermal conductivity of Si (natural abundance).

no dislocations and is free of impurities. Even then, isotope disorder provides
an additional mechanism for diffusive energy transport, which persists in the
harmonic approximation. E.g., for Si the natural abundance is 28Si 92.23%, 29Si
4.76%, and 30Si 3.01%, which means that the deviation from the perfect constant
atomic mass crystal can be considered as small.

To provide an example we reproduce in Fig. 1 the thermal conductivity for
chemically pure and dislocation free Si as measured by Glassbrenner and Slack
[7]. On the right hand side the importance of the various scattering mechanisms
is displayed. Above 100◦K one notes the classical 1/T-behavior. Below 100◦K the
quantization of phonons becomes relevant. Diffuse boundary scattering reflects
the size of the probe which is 2 cm long times 0.44 cm as average diameter. The
umklapp scattering refers to momentum nonconserving collisions, see Section 4.
The experimental findings are well reproduced by the theory(4), which is based on
the linearized Boltzmann equation, as will be explained in Section 14.

In the kinetic theory of gases the central object is the Boltzmann distribution
function N f (r, v, t), N the total number of particles, which counts the number
of gas molecules in the volume element d3rd3v in the one-particle phase space
close to r, v at time t . Phonons are not such local objects. In fact, upon specifying
the complete displacement field, including its velocities, it is not so clear how
to extract from it the positions and momenta of the particle-like objects called
phonons. Most likely, for a general displacement field no such procedure can be
devised. Still in the kinetic limit the mechanical picture becomes precise. As has
been recognized for some time [8, 9], the link between a wave field and transport
equations allowing for a mechanical interpretation is provided by the Wigner
function. This approach will be followed also in these notes, noting already now
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that the collision between phonons, while they conserve energy and momentum,
are otherwise unlike collisions between mechanical point particles.

For the purpose of a better understanding of the validity of the kinetic de-
scription, my guiding principle is to discard all details and to devise the arguably
simplest of all models, which still displays the same physics. I will even go as far as
to ignore the obvious fact that atoms deviate in three-space from their equilibrium
position. Hence I will assume that the displacement field is scalar. The virtue, I
hope, is to make the derivation of the transport equation maximally transparent.

We propose to ignore quantization in the first round. One reason is the hope
that for a classical model techniques different from a hierarchy of correlation
functions and Feynman diagrams might become available. As a further bonus,
we establish the link to weakly anharmonic, in general multicomponent, wave
equations, which are applied in the wave dynamics of the upper ocean, in acoustic
turbulence, and in other areas [10]. In this context the phenomenon of interest is
a turbulent state maintained through external forcing. Again, kinetic theory is the
natural theoretical tool to explain and predict properties of the steady state.

2. A REAL CRYSTAL SIMPLIFIED

We consider the simple cubic lattice Z
3 as the lattice of mechanical equilib-

rium positions of the crystal atoms. The deviations from their equilibrium position
are denoted by

qx ∈ R , x ∈ Z
3 , (2.1)

with the canonically conjugate momenta

px ∈ R , x ∈ Z
3 . (2.2)

We will use units in which the mass m of an atom equals one. For small
deviations from the equilibrium position we may use the harmonic approximation
in lowest order. The corresponding potential energy then reads

Uharm(q) = 1

2

∑
x,y∈Z3

α(x − y)qx qy . (2.3)

The elastic constants α(x) satisfy

α(x) = α(−x) , |α(x)| ≤ α0e−α1|x | (2.4)

for suitable α0, α1 > 0, and ∑
x∈Z3

α(x) = 0 (2.5)
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because of the invariance of the interaction between the crystal atoms under the
translation qx � qx + a. Mechanical stability requires

α̂(k) > 0 for k �= 0 (2.6)

for the Fourier transform α̂ of α.
The anharmonicity is assumed to reside only in the on-site potential which

we divide into a harmonic piece and the rest

Usite =
∑
x∈Z3

(
1

2
ω2

0q2
x + Van(qx )

)
. (2.7)

Physically, the on-site potential is artificial and it would be more natural to assume
that the atoms are coupled through a weakly anharmonic pair potential. As we will
argue below, in the kinetic limit only the collision rate turns out to be modified.
Thus, for the purpose of deriving the kinetic equation, we might as well stick to
the somewhat simpler on-site potential.

The Hamiltonian of the anharmonic lattice system is written as the sum

H = H0 + V . (2.8)

H0 is the harmonic piece given through

H0 = 1

2

∑
x∈Z3

(
p2

x + ω2
0q2

x

)
+ 1

2

∑
x,y∈Z3

α(x − y)qx qy , (2.9)

ω0 > 0. The lowest order type of anharmonicity reads

V =
∑
x∈Z3

Van(qx ) Van(qx ) = λ
1

3
q3

x (2.10)

with λ small. The potential energy Uharm + Usite is then not bounded from below,
which however will not be visible on the kinetic time scale. If preferred, one could
add to Van the quartic term λ′q4

x with λ′ = λ2/18ω2
0. Then H ≥ 0 and the quartic

term disappears in the kinetic scaling. For reasons of readability we will set λ′ = 0.
We work in the physical space dimension. Whether the kinetic approximation

is valid in one and two dimensions remains debated. On the other hand only for
such low dimensional systems extensive numerical results are available, to which
we will turn in Section 17.

The equations of motion are

d

dt
qx (t) = px (t) ,

d

dt
px (t) = −

∑
y∈Z3

α(y − x)qy(t) − ω2
0qx (t) − λqx (t)2 , x ∈ Z

3 . (2.11)
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We will consider only finite energy solutions. In particular, it is assumed that
|px | → 0, |qx | → 0 sufficiently fast as |x | → ∞. In fact, later on there will be the
need to impose random initial data, which again are assumed to be supported on
finite energy configurations. As to be explained in great detail, in the kinetic limit
the average energy diverges suitable linked to the nonlinearity λ → 0.

We will mostly work in Fourier space and set up the notation. Let T
3 =

[− 1
2 , 1

2 ]3 be the first Brillouin zone of the dual lattice. For f : Z
3 → R we use the

following convention for the Fourier transform,

f̂ (k) =
∑
x∈Z3

e−i2πk·x fx , k ∈ T
3 . (2.12)

f̂ (k) extends to a 2π -periodic function on R
3. The inverse Fourier transform is

given by

fx =
∫

T3

dkei2πk·x f̂ (k) , (2.13)

where dk is the 3-dimensional Lebesgue measure. This convention has the ad-
vantage of maximally avoiding prefactors of 2π . The dispersion relation for the
harmonic part H0 is easily computed as

ω(k) = (ω2
0 + α̂(k)

)1/2
. (2.14)

By mechanical stability ω(k) ≥ ω0. If ω0 > 0, then ω is a real analytic func-
tion on T

3. If ω0 = 0, ω may still be real analytic, one example being α̂(k) 
 |k|4
for small k. In Fourier space the equations of motion become

∂

∂t
q̂(k, t) = p̂(k, t) ,

∂

∂t
p̂(k, t) = −ω(k)2q̂(k, t)

−λ

∫
T6

dk1dk2δ(k − k1 − k2)̂q(k1, t )̂q(k2, t) (2.15)

with k ∈ T
3. Here δ is the δ-function on the unit torus, to say, δ(k ′) carries a point

mass whenever k ′ ∈ Z
3.

It will be convenient to concatenate qx and px into a single complex-valued
field. We set

a(k) = 1√
2

(√
ω(k) q̂(k) + i

1√
ω(k)

p̂(k)

)
(2.16)
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with the inverse

q̂(k) = 1√
2

1√
ω(k)

(a(k) + a(−k)∗) , p̂(k) = 1√
2

i
√

ω(k)(−a(k) + a(−k)∗) .

(2.17)
The a-field evolves as

∂

∂t
a(k, t) = −iω(k)a(k, t) − iλ

∫
T6

dk1dk2δ(k − k1 − k2)

× (8ω(k)ω(k1)ω(k2))−1/2(a(k1, t)

+ a(−k1, t)∗)(a(k2, t) + a(−k2, t)∗) . (2.18)

In particular for λ = 0,

a(k, t) = e−iω(k)t a(k) . (2.19)

For real crystals the a-field would be vector-valued for two reasons: the
displacements are in R

3 and the unit cell contains usually more than one atom.
Correspondingly ω then becomes a k-dependent matrix. Furthermore by transla-
tion invariance the potential energy of the crystal depends only on the differences
qy − qx . As long as the interest is merely in the derivation of the Boltzmann
equation such extra features can be ignored.

If one simplifies anyhow, the reader may wonder why we do not switch
to the continuum wave equation. In our context a natural option would be the
Klein-Gordon equation with a weak quadratic nonlinearity,

∂2

∂t2
φ(x, t) = 
φ(x, t) − ω2

0φ(x, t) − λφ(x, t)2 , x ∈ R
3 . (2.20)

Another possibility would be the standard wave equation with a cubic nonlinearity

∂2

∂t2
φ(x, t) = 
φ(x, t) − λφ(x, t)3 , x ∈ R

3 . (2.21)

We will discuss continuum equations in Section 8, from which it will become clear
that the underlying lattice structure plays a crucial role.

Having agreed upon the basic model (2.11) of our enterprise, we have reached
a point of bifurcation. Physically we should quantize (2.8), together with (2.9),
(2.10), according to the standard rules and then investigate the effects small an-
harmonicities. On the other hand it seems to be worthwhile not to hurry so much
and to explore the classical model, which has an interesting structure of its own.
In addition there could be help from the theory of nonlinear wave equations,
which would put our claims on firmer ground. Thus in Sections 3 to 6 we treat
the derivation of the Boltzmann equation for the classical model. The same pro-
gram is repeated for the quantized crystal in Sections 9 and 10 with the approach
through Feynman diagrams explained in Section 11. In Section 8 we address wave
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turbulence which is concerned with continuum wave equations such as (2.20) and
(2.21). Sections 7 and 12 study properties of Boltzmann equation, in particular
the H-theorem. The nonlinear part concludes with a discussion of the thermal
conductivity. In the final part of our notes we investigate the harmonic crystal with
random isotope substitution.

3. LOCAL STATIONARITY, WIGNER FUNCTION

The kinetic theory of dilute gases relies on the scale separation between
typical interatomic distances and the mean free path. As a consequence locally, in
regions of linear size much larger than atomic distances and much smaller than
the mean free path, the statistics of particles is Poisson in a good approximation. If
f (r, v, t) denotes the Boltzmann distribution function at time t , then close to r the
particles are uniformly distributed with density ρ(r ) = ∫ d3v f (r, v, t) and their
velocities are independent with common distribution f (r, v, t)/ρ(r ). The Poisson
distribution is singled out from all other conceivable distributions, because it is
stationary in time with respect to the free gas dynamics, translation invariant in
space, and has a strictly positive entropy per unit volume. In fact, there are no
other such probability measures(12).

To transcribe this kinetic picture to weakly interacting phonons, as
building blocks we need, on the phase space of microscopic configurations
{qx , px , x ∈ Z

3}, probability measures which are invariant under the free dy-
namics generated by H0, stationary under lattice shifts, and have a strictly positive
entropy per unit volume. The obvious candidates are Gaussian measures with zero
mean. By translation invariance, their covariance reads

〈qx qy〉 = Q(x − y) , 〈px py〉 = P(x − y) , 〈qx py〉 = C(x − y) . (3.1)

Let Q̂, P̂ , Ĉ denote the corresponding Fourier transforms. Then Q̂(k) ≥ 0, Q̂(k) =
Q̂(−k), P̂(k) ≥ 0, P̂(k) = P̂(−k), Ĉ(k) = Ĉ(−k)∗, and |Ĉ |2 ≤ Q̂ P̂ . Stationarity
in time yields in addition the relations

P̂ = ω2 Q̂ , C(x) = −C(−x) , i.e. Ĉ(k) = −Ĉ(−k) . (3.2)

Such properties are more concisely expressed through the a-field. Stationarity in
space-time is equivalent to

〈a(k)〉 = 0 , 〈a(k)a(k ′)〉 = 0 , 〈a(k)∗a(k ′)〉 = W (k)δ(k − k ′) . (3.3)

W (k) ≥ 0 and, by convention, W (k) is a 2π -periodic function on R
3. Inserting the

definition (2.16) and comparing with (3.2) results in

1

2
(W (k) + W (−k)) = 1

2

(
ωQ̂(k) + 1

ω
P̂(k)

)
= ωQ̂(k) = 1

ω
P̂(k) ,

1

2
(W (k) − W (−k)) = i Ĉ(k) . (3.4)
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The meaning of the covariance W is grasped better by considering expectations
of some physical quantities. Let us first study the local energy Hx , for which we
equally divide the potential energy between the two elastically coupled sites. Then

Hx = 1

2
p2

x + 1

2
ω2

0q2
x + 1

2

∑
y∈Z3

α(x − y)qx qy (3.5)

and

H0 =
∑
x∈Z3

Hx . (3.6)

Clearly

〈Hx 〉 =
∫

T3

dkω(k)W (k) . (3.7)

To probe further, we study the flow of energy out of a big box � ⊂ Z
3. Setting

H� =∑x∈� Hx one finds

d

dt
H� = 1

2

∑
x∈�

∑
y∈Z3\�

α(x − y)(−qx py + qy px ) . (3.8)

Since the coupling is not only nearest neighbor, the division into local currents is
somewhat arbitrary. To be specific, let us choose as one face of � the coordinate
plane {x, x1 = 0}. Then, in the limit � → ∞, the one-component of the energy
current becomes

j1
e = 1

2

∑
x1≤0

∑
y1≥1

α(x − y)(−q(x1,0,0) py + qy p(x1,0,0)) . (3.9)

Upon averaging, using (3.4) and (3.9),

〈 je〉 = 1

4π

∫
T3

dk∇α̂(k)W (k) = 1

2π

∫
T3

dk(ω∇ω)(k)W (k) . (3.10)

Thus it is natural to regard W as number density in wave number space. ωW is
the energy density and (2π )−1∇ω(ωW ) is the energy current density. Note that if
W is even, the total energy current vanishes.

A further important quantity is the entropy per unit volume, which on general
grounds is defined as the logarithm of the phase space volume at prescribed
values of the “macrovariables”, see Appendix 18.2 for further discussion. Here
we use an equivalent short-cut and compute the Gibbs entropy of the Gaussian
measure with covariance given through W . To do so let us choose the periodic box
[1, ]3,  integer, and consider the finite volume analogue of the Gaussian measure
from (3.3). Then k takes the discrete values k ∈ (−1[1, . . . , ])3. Let ρG be the
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corresponding probability density. As usual, the entropy of ρG is given through

S = −
∫

R3
d3

qd3
pρG log ρG =

∑
k∈(−1[1,...,])3

(log W (k) + log π + 1) (3.11)

and thus the entropy per unit volume by

lim
→∞

−3S =
∫

T3

dk(log W (k) + log π + 1) . (3.12)

The next step is to construct, out of the Gaussian measures introduced in
(3.3), Gaussian measures which have a slow variation in physical space Z

3 and
which are locally stationary. For this purpose we give ourselves the local power
spectrum W (r, k) ≥ 0, r ∈ R

3, which vanishes rapidly as |r | → ∞, and introduce

Q(r, x) =
∫

T3

dkW (r, k)ω(k)−1 cos(2πk · x) ,

P(r, x) =
∫

T3

dkW (r, k)ω(k) cos(2πk · x) ,

C(r, x) =
∫

T3

dkW (r, k) sin(2πk · x) , (3.13)

x ∈ Z
3, by which we define the family 〈·〉G,ε of Gaussian measures through

〈qx 〉G,ε = 0 , 〈px 〉G,ε = 0 ,

〈qx qx ′ 〉G,ε = Q(ε(x + x ′)/2, x − x ′) + O(ε) ,

〈px px ′ 〉G,ε = P(ε(x + x ′)/2, x − x ′) + O(ε) ,

〈qx px ′ 〉G,ε = C(ε(x + x ′)/2, x − x ′) + O(ε) . (3.14)

The error of order ε has to be allowed so to ensure a positive definite covariance
matrix.

This family has two important properties.

(i) Relative to the reference point r/ε, r ∈ R
3, the measure becomes station-

ary in the limit ε → 0. This is the property of local stationarity.
(ii) For two distinct reference points r and r ′, r �= r ′, the local distributions

become independent in the limit ε → 0 as can be inferred from

lim
ε→0

{〈q�r/ε�+x q�r/ε�+x ′q�r ′/ε�+yq�r ′/ε�+y′ 〉G,ε

−〈q�r/ε�+x q�r/ε�+x ′ 〉G,ε〈q�r ′/ε�+yq�r ′/ε�+y′ 〉G,ε} = 0 , (3.15)

with �·� denoting integer part, since Q(r, x) → 0 as |x | → ∞ . The
analogous property holds for the remaining covariances. Thus under the
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Gaussian measure 〈·〉G,ε two macroscopically far apart regions are statis-
tically independent.

The construction (3.14) is computationally not so flexible and it is more
convenient to invert the order. Thus the primary object is a family 〈·〉G,ε of Gaussian
measures (non-Gaussian measures to be discussed further on). They have mean
zero and a local covariance, which is almost time stationary and slowly varying
in space. These conditions are most easily imposed through the lattice analogue
of the local power spectrum W expressed in terms of a-field, compare with (3.3).
Firstly we require

〈a(k)〉G,ε = 0 , 〈a(k)a(k ′)〉G,ε = 0 . (3.16)

The local a∗a spectrum is defined through

W 1(x, k) = 2−3
∫

(2T)3

dηei2πx ·η〈a(k − η/2)∗a(k + η/2)〉G,ε . (3.17)

〈a(k − η/2)∗a(k + η/2)〉G,ε is T
3-periodic in k and (2T)3-periodic in η. Therefore

W (x, k) as inverse Fourier transform with respect to η is T
3-periodic in k and lives

on the half-integer lattice (Z/2)3 with respect to x .
We rescale the lattice to have lattice spacing ε through the substitution x =

ε−1 y, y ∈ (εZ/2)3, and obtain the rescaled local power spectrum

W ε(y, k) = (ε/2)3
∫

(2T/ε)3

dηei2πy·η〈a(k − εη/2)∗a(k + εη/2)〉G,ε . (3.18)

Then, denoting �·�ε as modulo ε, one requires

lim
ε→0

W ε(�r�ε, k) = W (r, k) (3.19)

pointwise. If 〈·〉G,ε is defined through (3.14), then W of (3.19) agrees with the one
in (3.13). W ε(y, k) is normalized as∑

y∈(εZ/2)3

∫
T3

dkW ε(y, k) =
∫

T3

dk〈a(k)∗a(k)〉G,ε . (3.20)

The condition that the limit in (3.19) exists thus implies that the average phonon
number increases as ε−3, equivalently the average total energy increases as∫

T3

dkω(k)〈a(k)∗a(k)〉G,ε = 〈H0〉G,ε = O(ε−3) . (3.21)

(3.18) has a familiar touch. Recall that for a quantum wave function ψ on
physical space R

3 the Wigner function is defined by

W ε(x, k) =
∫

R3

dηeix ·ηψ̂(k − εη/2)∗ψ̂(k + εη/2) (3.22)

1051



Spohn

with x, k ∈ R
3 and ψ̂ the Fourier transform of ψ . ε is the semiclassical parameter,

ε → 0 in the semiclassical limit. The main difference to (3.18) is that for the
semiclassical limit usually one considers a sequence ψε of wave functions, while
in (3.18) one has a sequence of probability measures over the wave field and its time
derivative. Because of this obvious analogy we call (3.18) the Wigner function,
more properly the one-point Wigner function. The n-point Wigner function is
understood as the n-th moment of a∗a.

For a family 〈·〉ε of general measures on phase space one defines the one-point
Wigner function

W ε(y, k) = (ε/2)3
∫

(2T/ε)3

dηei2πy·η〈a(k − εη/2)∗a(k + εη/2)〉ε , (3.23)

i.e. through (3.18) with 〈·〉G,ε replaced by 〈·〉ε. The rescaled two-point Wigner
function becomes

W ε(y1, k1, y2, k2) = (ε/2)6
∫

(2T/ε)6

dη1dη2 exp[i2πy1 · η1 + i2πy2 · η2]

×〈a(k1 − εη1/2)∗a(k1 + εη1/2)

× a(k2 − εη2/2)∗a(k2 + εη2/2)〉ε, (3.24)

and similarly for higher-point Wigner functions. We require (3.19) and

lim
ε→0

〈
m∏

j=1

a(k j )
∗

n∏
i=1

a(k ′
i )

〉ε

= 0 (3.25)

whenever m �= n. The condition of statistical independence of far apart regions
then reads

lim
ε→0

{W ε(�r1�ε, k1, �r2�ε, k2) − W ε(�r1�ε, k1)W ε(�r2�ε, k2)} = 0 (3.26)

for r1 �= r2, which in the context of low density gases is known as assumption of
molecular chaos. Since (3.26) is a law of large numbers, it implies that

lim
ε→0

W ε(�r1�ε, k1, . . . , �rn�ε, kn) =
n∏

j=1

W (�r j�ε, k j ) (3.27)

whenever the family {r1, . . . , rn} is free of double points.
There is no reason that 〈·〉ε becomes locally stationary as ε → 0. Still the

condition of local stationarity can be expressed through the limiting behavior of
multi-point Wigner functions. For example, in the case of the two-point function
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the condition would read

lim
ε→0

W ε(�r�ε, k1, �r�ε, k2) = W (r, k1)W (r, k2)

+ δ(k1 + k2)
∫

T3

dηW (r, k1 + η/2)W (r, k2 + η/2).

(3.28)

For a sequence 〈·〉G,ε of Gaussian measures satisfying (3.19) the identity (3.28)
holds by construction.

4. KINETIC LIMIT

As initial measures for (2.11) we adopt the scale of Gaussian measures 〈·〉G,ε

satisfying (3.16) – (3.19). The time-evolved measure at time t is denoted by 〈·〉t .
Let us first consider the harmonic lattice dynamics, λ = 0. Then by linearity, 〈·〉t

is again Gaussian. Since the deviations from stationarity are on the spatial scale
ε−1 and since there is a finite speed of propagation, one has to wait for times of
order ε−1t to observe appreciable changes of the Wigner function, which defines
the kinetic time scale ε−1t . On that scale one has

∂

∂t
〈a(k − εη/2)∗a(k + εη/2)〉t/ε,

= −iε−1(ω(k + εη/2) − ω(k − εη/2)) 〈a(k − εη/2)∗a(k + εη/2)〉t/ε . (4.1)

Taking the limit ε → 0 one obtains

∂

∂t
Ŵ (η, k, t) = −i∇ω(k) · ηŴ (η, k, t) (4.2)

and, upon inverting the Fourier transform, the limit Wigner function is the solution
of the transport equation

∂

∂t
W (r, k, t) = − 1

2π
∇ω(k) · ∇r W (r, k, t) . (4.3)

Thus in the kinetic limit, ε → 0, we can think of the phonon counting function W
as arising from a gas of independent particles, the phonons, with kinetic energy
ω(k). Detailed proofs for the validity of the free transport Equation (4.3) are
given by Mielke(13). He allows for rather general deterministic initial data and for
harmonic lattice dynamics with vector displacements and a general unit cell.

If one adjusts the strength of collisions in such a way as to have an effect of
the same order as the transport term, then kinetic theory claims that the locally
stationary state imposed at t = 0 retains its structure in the course of time. Of
course, the time-evolved measure 〈·〉t/ε is no longer exactly Gaussian. But for
small ε and on a local scale it does remain so in a good approximation. As crucial
difference to (4.3) the evolution equation will contain a collision term taking
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account of the anharmonicities. As to be shown in the following section, the cubic
term is of the right strength if one substitutes

λ �
√

ελ (4.4)

with λ fixed and independent of ε. Then the stabilizing quartic term has the strength
λ′ = (λ2/18ω2

0)ε, which is indeed small compared to the cubic term. The Wigner
function at the kinetic time t is given through

W ε(y, k, t) = ε3
∫

(T/ε)3

dηei2πy·η〈a(k − εη/2)∗a(k + εη/2)〉t/ε . (4.5)

It is expected that the limit ε → 0 exists,

lim
ε→0

W ε(�r�ε, k, t) = W (r, k, t) , (4.6)

and the limit phonon counting function W is the solution of a Boltzmann-like
equation. Its derivation will be explained in the section to follow, but let us state
the result already now,

∂

∂t
W (r, k, t) + 1

2π
∇ω(k) · ∇r W (r, k, t) (4.7)

= γ

∫
T6

dk1dk2(ω(k)ω(k1)ω(k2))−1{2δ(ω(k) + ω(k1) − ω(k2))

× δ(k + k1 − k2)(W (r, k1, t)W (r, k2, t) + W (r, k, t)W (r, k2, t)

− W (r, k, t)W (r, k1, t)) (I)

+ δ(ω(k) − ω(k1) − ω(k2))δ(k − k1 − k2)(W (r, k1, t)W (r, k2, t)

− W (r, k, t)W (r, k1, t) − W (r, k, t)W (r, k2, t))} (II)

with γ the strength of the collision term,

γ = π

2
λ2 . (4.8)

δ is the torus δ-function, see the explanation below Eq. (2.15). As shorthand the
collision operator is denoted by C(W ).

Fig. 2. Three phonon collisions.
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Dynamically the terms (I) and (II) can be viewed as given in Fig. 2. In
(I) the phonon with wave vector k collides with a phonon with wave vector k1

in order to merge into a phonon with wave vector k2. The loss term is the term
proportional to W (k), hence 2W (k)(W (k2) − W (k1)), and the gain term is the
remainder, i.e. 2W (k1)W (k2). Note that the gain term has a definite sign while the
loss term takes both signs. Correspondingly in (II) the phonon with wave vector
k splits into two phonons with wave vector k1 and k2. The gain term is again
W (k1)W (k2) and the loss term is −W (k)(W (k1) + W (k2)). The precise way of
how the phonon distribution functions appear in (4.7) does not seem to have a
mechanical interpretation in terms of colliding point particles. As can be seen
from the δ-functions in the collision operator, in both collision processes energy
is conserved, while momentum is conserved only modulo integers. E.g. for term
(I) the δ-function yields the constraint

k + k1 = k2 + n , n ∈ Z
3 , k, k1, k2 ∈ T

3 . (4.9)

In case n = 0 one speaks of a normal process while in case n �= 0 of an umklapp
process.

The rates appearing in (I) and (II) come out of the computation to be presented
in Section 6. However, their relative strength 1/2 is required in order for energy
to be locally conserved.

Note that the Boltzmann equation preserves the positivity of W . Obviously
the free streaming term has this property. If W first hits 0 at some point k,
W (r, k, t) = 0, then dW (r, k, t)/dt > 0, d/dt denoting the total time derivative,
due to the positive gain term and vanishing loss term of the collision operator.
Hence at that point W cannot turn negative.

This seems to be a good moment to return to the issue of a potential energy
which depends only on the differences in the displacements, as would be the case
for a real crystal. Then ω0 = 0 and V of (2.10) is replaced by

V3 = λ
1

3

∑
x∈Z3

3∑
α=1

(qx+eα
− qx )3 , (4.10)

e1, e2, e3 the standard basis of Z
3, which expressed in terms of the a-fields becomes

V3 = λ
1

3

3∑
α=1

∫
T9

dk1dk2dk3δ(k1 + k2 + k3)

×
3∏

j=1

{
(2ω(k j ))

−1/2(exp[i2πkα
j ] − 1)(a(k j ) + a(−k j )

∗)
}
. (4.11)

Compared to V of (2.10), only the weight in Fourier space has changed.
Thus the Boltzmann equation remains as in (4.7) provided the collision rate
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(ω(k)ω(k1)ω(k2))−1 is replaced by

3∏
j=1

∣∣ 3∑
α=1

ω(k j )
−1/2(exp[i2πkα

j ] − 1)
∣∣2 , k3 = k . (4.12)

Close to the origin this collision rate is more singular than the one in (4.7). But
the general properties of the Boltzmann equation, as to be discussed in Section 7,
remain in force.

We hurried a little bit to write down the Boltzmann equation. So the reader
might wonder why we claim that on the kinetic time scale local stationarity is
maintained. The point is that the free dynamics, generated by H0, does not tolerate
deviations from local stationarity as long as the free dynamics is given some
time act. Such a property has been studied in considerable detail by Dobrushin
et al.(14), for recent improvements see(15). Roughly speaking, they consider initial
measures 〈·〉ε on phase space for which 〈qx 〉ε = 0 = 〈px 〉ε and for which the
Wigner function W ε of (3.23) has a limit as in (3.19). In addition they require
that under 〈·〉ε spatial regions separated by a distance  with 1 �  � ε−1 are
in essence statistically independent. 〈·〉ε is non-Gaussian, in general. This initial
state is evolved under the dynamics generated by H0. Then, for times t where 1 �
t � ε−1, the Wigner function does not change. However locally the oscillators
adjust such that the measure becomes to a very good approximation Gaussian and
satisfies the conditions (3.16) and (3.19). Thus for times which are short on the
kinetic scale the harmonic lattice dynamics forces local stationarity.

5. CONDITIONS ON THE DISPERSION RELATION

Our discussion seems to indicate that the kinetic description holds indepen-
dently of the particular form of the (short ranged) harmonic interaction potential,
in other words independently of the (analytic) dispersion relation. As far as the
convergence to locally stationary Gaussian measures is concerned, this impression
is well supported(14). However, for three-phonon collision processes it cannot be
taken for granted to have a non-vanishing collision operator. If one sets

Eq (k) = ω(k) + ω(q) − ω(k + q) , (5.1)

clearly conservation of energy can be satisfied only if

Eq (k) = 0 (5.2)

admits solutions when considered as a function on T
6. For nearest neighbor cou-

pling only, to say α(e) = −1 for |e| = 1, α(0) = 6, and α(x) = 0 otherwise, the
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dispersion relation reads

ω(k) =
(

ω2
0 + 2

3∑
j=1

(1 − cos(2πk j ))

)1/2

, k = (k1, k2, k3) . (5.3)

As shown in Appendix 18.1, for this choice Eq (k) ≥ ω0/2 > 0. The physically
most obvious model does not admit three-phonon collisions.

From this perspective one might wonder whether (5.2) can be satisfied at all.
An example which can be checked still by hand is given by

ω(k) = ω0 + 2
3∑

j=1

(1 − cos(2πk j )) . (5.4)

It corresponds to the harmonic couplings

(6 + ω0)(q(1,0,0) − q0)2 , −1

2
(q(2,0,0) − q0)2 , −(q(1,1,0) − q0)2 , (5.5)

all others determined by isotropy and translation invariance. Note that the next
nearest neighbor couplings are destabilizing. Clearly E0(0) = ω0 while for q =
(1/4)(1, 1, 1), k = (1/8)(1, 1, 1) one has Eq (k) = ω0 − 6(

√
2 − 1) < 0 provided

ω0 is not too large.
To have a nonvanishing collision operator we require∫

T6

dkdqδ(ω(k) + ω(q) − ω(k + q)) > 0 . (5.6)

There seems to be no simple sufficient criterion on ω, which would ensure (5.6).
Numerically one plots Eq (k) for random choices for q to find out whether Eq (k)
takes negative values which then implies (5.6).

Observe that Eq (0) = ω0 for all q ∈ T
3. If ω0 > 0, by continuity there is then

a neighborhood �0 of 0 defined through �0 = {k ∈ T
3, Eq (k) > 0 for all q ∈ T

3}
and 0 ∈ �0. If W (r, k) is supported in �0 for every r , then C(W ) = 0. The free
flow leaves this set of W ’s invariant and therefore such W ’s evolve merely by free
streaming. In general, there will other components of T

3 where no collision partner
is available. In addition, there can be components �1,�2, . . . , �m such that if k ∈
� j it will remain so under any sequence of collisions. Then in each � j the system
equilibrates in the long time limit, but in general the equilibration temperature will
differ from component to component. For this reason we introduce the notion that
k ∈ T

3 \ {0} is linked by a collision to q ∈ T
3 \ {0} if Eq (k) = 0. Clearly, linkage is

symmetric.

Ergodicity Condition (E): For every k, k ′ ∈ T
3 \ {0} there is a finite sequence of

collisions such that k is linked to k ′.
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In particular for every k �= 0 there is at least one collision partner q �= 0 such that
Eq (k) = 0. A necessary condition for ergodicity to hold is ω0 = 0. If in (5.4) we
set ω0 = 0, then ergodicity is satisfied with one intermediate collision, as can be
seen from an explicit computation.

There is a further condition related to the issue of existence of solutions of the
Boltzmann equation (4.7). If ‖W‖∞ denotes the sup-norm, the collision operator
can be trivially estimated as

‖C(W )‖∞ ≤ c
(

sup
q∈T3

∫
T3

dkδ(Eq (k))
)
‖W‖2

∞ (5.7)

provided ω0 > 0. By standard methods of kinetic theory, if∫
T3

dkδ(Eq (k)) ≤ emax < ∞ , (5.8)

then the Boltzmann equation (4.7) has a unique bounded solution for 0 ≤ t ≤ t0
with suitable t0. If (5.8) does not hold, resp. if ω0 = 0, to establish the existence
of solutions local in time would require more efforts.

For the dispersion relation (5.4) the condition (5.8) is satisfied. In general, for
(5.8) to hold Eq (k) has to be a Morse function uniformly in q. To see why, assume
that Eq is not a Morse function, and try to locate points q where the integral in
(5.8) diverges. On the level set {k, Eq (k) = 0} one must have

∇k Eq (k) = 0 , (5.9)

which can be solved locally to yield q = q(k). Thus

Eq(k)(k) = 0 (5.10)

must have solutions. Secondly the Hessian of Eq (k) must have at least one van-
ishing eigenvalue which leads to the condition

det(Hess Eq (k)) = 0 at q = q(k) . (5.11)

The surfaces in T
3 defined through the level zero sets in (5.10) and (5.11) will

generically intersect along a curve. Thus we must be prepared that the integral in
(5.8) diverges along a curve in T

3. Again, no simple sufficient criterion is available
to ensure (5.8).

6. DERIVATION OF THE PHONON BOLTZMANN EQUATION

(CLASSICAL MODEL)

The textbook derivation of the Boltzmann equation starts from the quantized
theory as to be discussed in Section 9, and uses the Fermi golden rule to compute
the transition rate, see(3) for a particularly lucid discussion. While such a procedure
yields the correct rates, it provides little theoretical insight why the Fermi golden
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rule would be applicable in such a field theoretical context. Of course, the best
of all possibilities would be to have a mathematically rigorous derivation. We are
far from such a goal at present. Instead we offer in this section a derivation based
on the concept of local stationarity through which higher order correlations can
be suitably decoupled, see(16) for a similar argument in the case of a weakly inter-
acting Fermi gas on the lattice. Physically, this seems to me the most transparent
procedure, admittedly with the disadvantage that the approximate local stationarity
cannot be checked directly. A more systematic approach uses Feynman diagrams,
as will be explained in Section 11.

To properly argue for the validity of the Boltzmann equation (4.7), it is con-
venient to work in atomic units for a while. We give ourselves the Wigner function
W (r, k) ≥ 0 and assume that the initial measure, 〈·〉0, is Gaussian satisfying (3.16)
and (3.19). The average with respect to the measure at time t is denoted by 〈·〉t .
We introduce the shorthands

a(k, 1) = a(k)∗ , a(k,−1) = a(k) , (6.1)

and

φ(k, k1, k2) = λ(8ω(k)ω(k1)ω(k2))−1/2 . (6.2)

Then the equations of motion (2.18) can be written in the more compact form

d

dt
a(k, σ ) = iσω(k)a(k, σ ) + i

√
εσ

∑
σ1,σ2=±1

∫
T6

dk1dk2φ(k, k1, k2)

× δ(−σk + σ1k1 + σ2k2)a(k1, σ1)a(k2, σ2) , σ = ±1 . (6.3)

The two-point function satisfies

d

dt
〈a(p)∗a(q)〉t = i(ω(p) − ω(q))〈a(p)∗a(q)〉t + √

εF(q, p, t) (6.4)

with

F(q, p, t) = i
∑

σ1,σ2=±1

∫
T6

dk1dk2(φ(p, k1, k2)δ(−p + σ1k1 + σ2k2)

〈 a(k1, σ1)a(k2, σ2)a(q)〉t − φ(q, k1, k2)δ(q + σ1k1 + σ2)

×〈a(p)∗a(k1, σ1)a(k2, σ2)〉t ) . (6.5)

We need a second iteration, which we write in integrated form as

F(q, p, t) = Fhom(q, p, t) + √
ε

∫ t

0
dsG(q, p, t − s, s) . (6.6)

1059



Spohn

The homogeneous term in (6.6) reads

Fhom(q, p, t) = i
∑

σ1,σ2=±1

∫
T6

dk1dk2eit(σ1ω(k1)+σ2ω(k2))

× (φ(p, k1, k2)δ(−p + σ1k1 + σ2k2)e−i tω(q)〈a(k1, σ1)a(k2, σ2)a(q)〉0

− φ(q, k1, k2)δ(q + σ1k1 + σ2)eitω(p)〈a(p)∗a(k1, σ1)a(k2, σ2)〉0)

= 0 , (6.7)

since in the initial measure odd moments vanish. We conclude that

d

dt
〈a(p)∗a(q)〉t = i(ω(p) − ω(q))〈a(p)∗a(q)〉t + ε

∫ t

0
dsG(q, p, t − s, s) .

(6.8)
Following (3.23) one switches to Wigner function variables and sets

Ŵ ε(η, k, t) = ε3〈a(k − εη/2)∗a(k + εη/2)〉t/ε . (6.9)

Then
∂

∂t
Ŵ ε(η, k, t) = iε−1(ω(k − εη/2) − ω(k + εη/2))Ŵ ε(η, k, t)

+ ε3
∫ t/ε

0
dsG(k + εη/2, k − εη/2, ε−1t − s, s) . (6.10)

Assuming that Ŵ ε(η, k, t) converges to Ŵ (η, k, t) as ε → 0, the remaining task
is to establish that the inhomogeneous term on the right converges to the collision
operator (4.7) acting on Ŵ (η, k, t).

(1) Local stationarity, Gaussian approximation. The integrand of the inho-
mogeneous term in (6.6) is given by

G(q, p, t, s) =
∑

σ1,σ2=±1

∫
T6

dk1dk2

∑
τ1,τ2=±1

∫
T6

dl1dl2φ(p, k1, k2)

× φ(q, l1, l2)(δ(−p + σ1k1 + σ2k2)δ(q + τ1l1 + τ2l2)e−i tω(q)

+ δ(q + σ1k1 + σ2k2)δ(−p + τ1l1 + τ2l2)eitω(p))

× eit(σ1ω(k1)+σ2ω(k2))〈a(k1, σ1)a(k2, σ2)a(l1, τ1)a(l2, τ2)〉s

− 2
∑

σ1,σ2=±1

∫
T6

dk1dk2

∑
τ1,τ2=±1

∫
T6

dl1dl2φ(k1, l1, l2)

× δ(−σ1k1 + τ1l1 + τ2l2)eit(σ1ω(k1)+σ2ω(k2))σ1

× (
φ(p, k1, k2)δ(−p + σ1k1 + σ2k2)e−i tω(q)

× 〈a(q)a(k2, σ2)a(l1, τ1)a(l2, τ2)〉s
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− φ(q, k1, k2)δ(q + σ1k1 + σ2k2)eitω(p)

× 〈a(p)∗a(k2, σ2)a(l1, τ1)a(l2, τ2)〉s

)
. (6.11)

As our basic assumption, in the kinetic scaling regime, the average 〈·〉s at the
arguments in question is in a good approximation a locally stationary measure.
If so, the averages appearing in (6.11) can be substituted by Gaussian pairings.
Using the shorthand k for a(k, σ ), the approximation amounts to

〈k1k2l1l2〉s = 〈k1l1〉s〈k2l2〉s + 〈k1l2〉s〈k2l1〉s + 〈k1k2〉s〈l1l2〉s ,

〈qk2l1l2〉s = 〈ql1〉s〈k2l2〉s + 〈ql2〉s〈k2l1〉s + 〈qk2〉s〈l1l2〉s , (6.12)

and correspondingly for p. By symmetry, upon inserting in (6.11), the first two
terms on the right are identical and will yield the gain and loss term, respectively.
The third pairing is subleading and vanishes as ε → 0. Accordingly we set

G = Ggain + G loss + Gsub . (6.13)

(2) Gain and loss term. In Ggain we change to Wigner fucntion variables as

k1 = k ′ − εσ1η
′/2 , l1 = k ′ + εσ1η

′/2 , τ1 = −σ1 ,

k2 = k ′′ − εσ2η
′′/2 , l2 = k ′′ + εσ2η

′′/2 , τ2 = −σ2 . (6.14)

The ε-dependence of φ can be ignored and the η-integration is extended to R
3,

since by asumption Ŵ ε(η, k, t) has a good decay in η. The phases have to be
expanded to first order in ε. Then

Ggain(k + εη/2, k − εη/2, t, s)

= 2ε6
∑

σ1,σ2=±1

∫
T6

dk ′dk ′′
∫

R6

dη′dη′′φ(k, k ′, k ′′)2eit(σ1ω(k ′−εσ1η
′/2)+σ2ω(k ′′−εσ2η

′′/2))

×(δ(−k + ε(η/2) + σ1(k ′ − εσ1η
′/2) + σ2(k ′′ − εσ2η

′′/2))

× δ(k + ε(η/2) − σ1(k ′ + εσ1η
′/2) − σ2(k ′′ + εσ2η

′′/2))e−i tω(k+εη/2)

+ δ(k + ε(η/2) + σ1(k ′ − εσ1η
′/2) + σ2(k ′′ − εσ2η

′′/2))

× δ(−k + ε(η/2) − σ1(k ′ + εσ1η
′/2) − σ2(k ′′ + εσ2η

′′/2))eitω(k−εη/2)
)

×〈a(k ′ − εσ1η
′/2, σ1)a(k ′ + εσ1η

′/2,−σ1)〉s

×〈a(k ′′ − εσ2η
′′/2, σ2)a(k ′′ + εσ2η

′′/2,−σ2)〉s

= 2ε−3
∑

σ1,σ2=±1

∫
T6

dk ′dk ′′ ×
∫

R6

dη′dη′′φ(k, k ′, k ′′)2eit(σ1ω(k ′)+σ2ω(k ′′))

× e−i tε(∇ω(k)(η/2)+∇ω(k ′)(η′/2)+∇ω(k ′′)(η′′/2))
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× (e−i tω(k)δ(k − σ1k ′ − σ2k ′′) + eitω(k)δ(k + σ1k ′ + σ2k ′′)
)

× δ(η − η′ − η′′)Ŵ ε(η′, k ′, s)Ŵ ε(η′′, k ′′, s)

= 2ε−3
∑

σ1,σ2=±1

∫
T6

dk ′dk ′′ ×
∫

R6

dη′dη′′φ(k, k ′, k ′′)2

×(eit(−ω(k)+σ1ω(k ′)+σ2ω(k ′′)) + c.c.
)

× δ(k − σ1k ′ − σ2k ′′)e−i tε(∇ω(k)(η/2)+∇ω(k ′)(η′/2)+∇ω(k ′′)(η′′/2))

× δ(η − η′ − η′′)Ŵ ε(η′, k ′, s)Ŵ ε(η′′, k ′′, s) , (6.15)

where in the last step the c.c. term arises through replacing the sum over σ1, σ2 by
the sum over −σ1,−σ2.

In G loss we change to Wigner function variables as∫
T3

dk3δ(q − k3)〈k3l1〉s〈k2l2〉s ,

l1 = k ′ − εη′/2 , k3 = k ′ + εη′/2 , τ1 = 1 ,

k2 = k ′′ − εσ2η
′′/2 , l2 = k ′′ + εσ2η

′′/2 , τ2 = −σ2 , (6.16)

and ∫
T3

dk3δ(p − k3)〈k3l1〉s〈k2l2〉s ,

k3 = k ′ − εη′/2 , l1 = k ′ + εη′/2 , τ1 = −1 ,

k2 = k ′′ − εσ2η
′′/2 , l1 = k ′′ + εσ2η

′′/2 , τ2 = −σ2 . (6.17)

Then

G loss(k + εη/2, k − εη/2, t, s)

= −4ε6
∑

σ1,σ2=±1

∫
T9

dk1dk ′dk ′′
∫

R6

dη′dη′′φ(k1, k ′, k ′′)φ(k, k1, k ′′)σ1

× eit(σ1ω(k1)+σ2ω(k ′′))eitε(−∇ω(k ′)(η′/2)−∇ω(k ′′)(η′′/2))

× (e−i tω(k ′)δ(−σ1k1 + k ′ − ε(η′/2) − σ2k ′′ − ε(η′′/2))

× δ(−k + ε(η/2) + σ1k1 + σ2k ′′ − ε(η′′/2))δ(k + ε(η/2) − k ′ − ε(η′/2))

− eitω(k ′)δ(−σ1k1 − k ′ − ε(η′/2) − σ2k ′′ − ε(η′′/2))

× δ(k + ε(η/2) + σ1k1 + σ2k ′′ − ε(η′′/2))δ(k − ε(η/2) − k ′ + ε(η′/2))
)

× Ŵ ε(η′, k ′, s)Ŵ ε(η′′, k ′′, s) . (6.18)
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We integrate over k ′ and neglect the shift of order ε in the η-argument of Ŵ ε.
In the second summand σ1, σ2 is substituted by −σ1,−σ2 with the result

G loss(k + εη/2, k − εη/2, t, s)

= −4ε−3
∑

σ1,σ2=±1

∫
T6

dk1dk ′′
∫

R6

dη′dη′′φ(k, k1, k ′′)2

×(eit(ω(k)−σ1ω(k1)−σ2ω(k ′′)) + c.c.
)

×σ1δ(k − σ1k1 − σ2k ′′)e−i tε(∇ω(k)(η/2)+∇ω(k ′′)(η′′/2))

×δ(η − η′ − η′′)Ŵ ε(η′, k, s)Ŵ ε(η′′, k ′′, s) . (6.19)

By assumption the Wigner function is varying on the kinetic scale. Thus the
remaining time integration for Ggain and G loss is of the generic form

lim
ε→0

∫
dωg(ω)

∫ t/ε

0
ds
(
eiω(t−s) + e−iω(t−s)

)
f (εs, ε(ε−1t − s))

lim
ε→0

∫
dωg(ω)ε−12

∫ t

0
ds cos(ωs/ε) f (t − s, s)

= 2π

∫
dωg(ω)δ(ω) f (t, 0) , (6.20)

where g(ω) is some smooth test function of rapid decay.
Combining (6.15), (6.19), (6.20) and upon noting that the convolution be-

comes multiplication in position space, one concludes that

lim
ε→0

∫ t/ε

0
ds(ε/2)3

∫
(2T/ε)3

dηei2π�r�ε ·η(Gε
gain(k + εη/2, k − εη/2, (ε−1t − s), s)

+Gε
loss(k + εη/2, k − εη/2, (ε−1t − s), s)

)
= λ2 π

2

∑
σ1,σ2=±1

∫
T6

dk1dk2(ω(k)ω(k1)ω(k2))−1δ(ω − σ1ω1 − σ2ω2)

×δ(k − σ1k1 − σ2k2)(W (r, k1, t)W (r, k2, t) − 2σ1W (r, k, t)W (r, k2, t)) , (6.21)

which agrees with the collision term (4.7).

(3) Subleading terms. There are two subleading terms from (6.12), denoted
here by Gsub = Gsub1 + Gsub2. For Gsub1 we change to Wigner function variables
as

k1 = k ′ − εσ1η
′/2 , k2 = k ′ + εσ1η

′/2 , σ2 = −σ1 ,

l1 = k ′′ − ετ1η
′′/2 , l2 = k ′′ + ετ1η

′′/2 , τ2 = −τ1 . (6.22)
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Then

Gsub1(k + εη/2, k − εη/2, t, s)

=
∑

σ1,τ1=±1

∫
T6

dk ′dk ′′
∫

R6

dη′dη′′φ(k, k ′, k ′)φ(k, k ′′, k ′′)e−i tε(∇ω(k ′)η′+∇ω(k)(η/2))

× (e−i tω(k)δ(−k + ε(η/2) − εη′)δ(k + ε(η/2) − εη′′)

+eitω(k)δ(k + ε(η/2) − εη′)δ(k − ε(η/2) + εη′′)
)
Ŵ ε(η′, k ′, s)Ŵ ε(η′′, k ′′, s)

= 4ε−3
∫

T6

dk ′dk ′′
∫

R6

dη′dη′′φ(k, k ′, k ′)φ(k, k ′′, k ′′)
(
e−i tω(k) + eitω(k)

)
× δ(k)e−i tε(∇ω(k ′)η′+∇ω(k)(η/2))δ(η − η′ − η′′)Ŵ ε(η′, k ′, s)Ŵ ε(η′′, k ′′, s) .

(6.23)

The remaining time integration is of the generic form∫ t/ε

0
ds cos(ω(0)(ε−1t − s)) f (εs) = ε−1

∫ t

0
ds cos(ω(0)s/ε) f (t − s)

= ω(0)−1
(

sin(ω(0)t/ε) f (0) +
∫ t

0
ds sin(ω(0)s/ε) f ′(t − s)

)
. (6.24)

The second summand is of order ε. The first summand oscillates fastly around
zero average and thus vanishes by one further integration in time.

Our argument indicates that ω(0) > 0 is required. If ω(0) = 0, then the prod-
uct δ(k)ω(k)−1 is not defined. Whether this is an artifact of the derivation or signals
a limit in the validity of the kinetic description remains to be understood.

For Gsub2 we change to Wigner function variables as∫
T3

dk3δ(q − k3)〈k3k2〉s〈l1l2〉s ,

k2 = k ′ − εη′/2 , k3 = k ′ + εη′/2 , σ2 = 1 ,

l1 = k ′′ − ετ1η
′′/2 , l2 = k ′′ + ετ1η

′′/2 , τ2 = −τ1 , (6.25)

and ∫
T3

dk3δ(p − k3)〈k3k2〉s〈l1l2〉s ,

k3 = k ′ − εη′/2 , k2 = k ′ + εη′/2 , σ2 = −1 ,

l1 = k ′′ − ετ1η
′′/2 , l2 = k ′′ + ετ1η

′′/2 , τ2 = −τ1 . (6.26)

Then

Gsub2(k + εη/2, k − εη/2, t, s)
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= −2
∑

σ1,τ1=±1

∫
T9

dk1dk ′dk ′′ ×
∫

R6

dη′dη′′φ(k, k1, k ′)φ(k1, k ′′, k ′′)

× e−i tε(∇ω(k ′)(η′/2)+∇ω(k)(η/2))δ(−σ1k1 − εη′′)
(
eit(σ1ω(k1)+ω(k ′)−ω(k))

× δ(k + ε(η/2) − k ′ − ε(η′/2))δ(−k + ε(η/2) + σ1k1 + k ′ − ε(η′/2))

− eit(σ1ω(k1)−ω(k ′)+ω(k))δ(k − ε(η/2) − k ′ + ε(η′/2))

× δ(k + ε(η/2) + σ1k1 − k ′ − ε(η′/2))
)
σ1Ŵ ε(η′, k ′, s)Ŵ ε(η′′, k ′′, s)

= −4
∑

σ1=±1

∫
T9

dk1dk ′dk ′′
∫

R6

dη′dη′′φ(k1, k, k)φ(k1, k ′′, k ′′) (6.27)

× eitσ1ω(k1)(δ(k − k ′ + ε(η/2) − ε(η′/2)) − δ(k − k ′ − ε(η/2) + ε(η′/2)))

× δ(σ1k1 + εη′′)e−i tε∇ω(k ′)η′
δ(η − η′ − η′′)σ1Ŵ ε(η′, k ′, s)Ŵ ε(η′′, k ′′, s).

Integrating over k1 yields the phase ω(εη′′). If ω(0) > 0, the remaining time
integration is of order 1. The difference of δ-functions in the large round bracket
is of order ε, when integrated against Ŵ ε. Therefore the second subleading term
vanishes as ε → 0.

7. SOME PROPERTIES OF THE CLASSICAL PHONON

BOLTZMANN EQUATION

(i) Energy. The energy at position r and time t on the kinetic scale is defined
through

e(r, t) =
∫

T3

dkω(k)W (r, k, t) . (7.1)

It satisfies the local conservation law

∂

∂t
e(r, t) + ∇ · je(r, t) = 0 . (7.2)

From the transport term one concludes that the energy current is given by

je(r, t) = (2π )−1
∫

T3

dk(∇ω(k))ω(k)W (r, k, t) . (7.3)

The vanishing of the contribution from the collision term can be seen from∫
T9

dk1dk2dk3(ω(k1)ω(k2)ω(k3))−1{2δ(ω(k1) + ω(k2) − ω(k3))δ(k1 + k2 − k3)

×ω(k1)(W (k2)W (k3) + W (k1)W (k3) − W (k1)W (k2))

+ δ(ω(k1) − ω(k2) − ω(k3))
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× δ(k1 − k2 − k3)ω(k1)(W (k2)W (k3) − W (k1)W (k2) − W (k1)W (k3))}

=
∫

T9

dk1dk2dk3(ω(k1)ω(k2)ω(k3))−1δ(ω(k1) + ω(k2) − ω(k3))δ(k1 + k2 − k3)

×ω(k3)
(
W (k2)W (k3) + W (k1)W (k3) − W (k1)W (k2)

+ W (k1)W (k2) − W (k3)W (k1) − W (k3)W (k2)) = 0 . (7.4)

We used here the symmetrization of 2ω(k1) to ω(k1) + ω(k2), the energy con-
servation ω(k1) + ω(k2) = ω(k3) in term (I), and the cyclic substitution k1 → k3,
k3 → k2, k2 → k1 in term (II).

If the ergodicity condition (E) holds, energy is the only conservation law, see
the discussion at the end of Section 12.

(ii) Entropy. Following (3.12), up to a constant, the local entropy at position
r and time t on the kinetic scale is defined through

s(r, t) =
∫

T3

dk log W (r, k, t) . (7.5)

It satisfies the semi-conservation law

∂

∂t
s(r, t) + ∇ · js(r, t) = σ (r, t) (7.6)

with the entropy flow

js(r, t) = (2π )−1
∫

T3

dk∇ω(k) log W (r, k, t) (7.7)

and the entropy production

σ (r, t) = γ

∫
T9

dk1dk2dk3(ω(k1)ω(k2)ω(k3))−1δ(ω(k1) + ω(k2) − ω(k3))

×δ(k1 + k2 − k3)W (r, k1, t)W (r, k2, t)W (r, k3, t)

× (W (r, k1, t)−1 + W (r, k2, t)−1 − W (r, k3, t)−1
)2

. (7.8)

Clearly σ ≥ 0. To derive the expression (7.8) one uses the same identities as for
the energy,

γ

∫
T9

dk1dk2dk3(ω(k1)ω(k2)ω(k3))−1W (k1)−1
{
2δ(ω(k1) + ω(k2) − ω(k3))

× δ(k1 + k2 − k3)(W (k2)W (k3) + W (k1)W (k3) − W (k1)W (k2))

+ δ(ω(k1) − ω(k2) − ω(k3))δ(k1 − k2 − k3)

× (W (k2)W (k3) − W (k1)W (k2) − W (k1)W (k3))}

= γ

∫
T9

dk1dk2dk3(ω(k1)ω(k2)ω(k3))−1δ(ω(k1) + ω(k2) − ω(k3))δ(k1 + k2 − k3)
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× W (k1)W (k2)W (k3)(W (k1)−2 + W (k2)−2 + 2W (k1)−1W (k2)−1

−2W (k1)−1W (k3)−1 + W (k3)−2 − W (k3)−1W (k2)−1 − W (k3)−1W (k2)−1)

= σ . (7.9)

The entropy production vanishes if and only if

W (k1)−1 + W (k2)−1 − W (k1 + k2)−1 = 0 (7.10)

on the set {(k1, k2) ∈ R
6 | ω(k1) + ω(k2) = ω(k1 + k2)}. As will be discussed in

Section 12, if the ergodicity condition (E) holds, the only solution to (7.10) is

Wβ(k) = 1

βω(k)
. (7.11)

β > 0 is a free parameter. Physically, β is the inverse temperature, β = (kBT )−1.
We will use temperature units such that kB = 1.

(iii) Stationary solutions. For the spatially homogeneous Boltzmann equation
under the ergodicity condition (E) the only stationary solutions are of the form
(7.11). If there would be another stationary solution, its entropy production has to
vanish, which means (7.10) has to be satisfied, in contradiction to (7.11) being the
only solution of (7.10).

(7.11) is in accordance with equilibrium statistical mechanics. In thermal
equilibrium, the nonlinearity can be ignored in the kinetic limit and the Gibbs
distribution is Z−1 exp[−βH0]. This is a Gaussian measure with Wigner function
Wβ(k) = (βω(k))−1.

To have the one-parameter family (7.11) as the only stationary solu-
tions is a remarkable prediction of the phonon Boltzmann equation. It means
that the weak nonlinearity thermalizes the gas of phonons. For example, one
could set up an initial state with nonvanishing phonon current, jn(0) = (2π )−1∫

T3 dk∇ω(k)W (k, t = 0) �= 0. Through umklapp processes this current degrades
in the course of time and limt→∞ jn(t) = 0. If there are no umklapp processes, as
for the continuum wave equation below, on the kinetic level there are stationary
states which maintain a constant phonon current.

8. WAVE TURBULENCE

Wave turbulence has become a generic term for, possibly multicomponent,
wave equations with weak nonlinearity. Examples are listed in(10) and include
waves on liquid surfaces, acoustic turbulence, and the nonlinear Schrödinger
equation for dispersive media. The link to our discussion comes from the fact
that apparently kinetic theory is the most powerful method available to handle
the nonlinearities, a concrete field of application being the dynamics of ocean
waves(11). The underlying physical space is R

3, possibly R
2, which means that
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we briefly return to the continuum setting from the end of Section 2. For wave
turbulence, typically one is interested in a stationary nonequilibrium state which
is sustained by pumping in energy at large scales and dissipating it at small scales.
Thus the focus is on stationary solutions of the spatially homogeneous equation
with the appropriate source terms added. Here we only discuss the derivation of
the kinetic equation from the Klein-Gordon Eq. (2.20).

(2.20) has the dispersion relation ω(k) = (ω2
0 + k2)1/2, ω0 ≥ 0. For three-

wave interactions the resonance condition reads

ω(k1) + ω(k2) = ω(k1 + k2) , (8.1)

where momentum conservation, k1 + k2 = k3, has been used already. If ω0 > 0,
then

ω(k1 + k2) < ω(k1) + ω(k2) (8.2)

and (8.1) cannot be satisfied. If ω0 = 0, the vectors must be collinear which again
yields a vanishing collision term. Thus on the kinetic time scale we have to turn
to four-wave interactions in order to have the nonlinearity still in effect.

The “simplest” example is

∂2

∂t2
φ = 
φ − ω2

0φ − √
ελφ3 . (8.3)

As in (8.2) one concludes that the merging of three phonons into one and the
splitting of one phonon into three are forbidden processes on the kinetic scale. The
only remaining possibility are pair collisions, see Fig. 8. For the formal derivation
of the kinetic equation one proceeds as in Section 6 with the result

∂

∂t
W (k) + ∇ω(k) · ∇r W (k) (8.4)

= 9π

4
λ2(2π )−3

∫
d3k1d3k2d3k3(ω(k)ω(k1)ω(k2)ω(k3))−1

× δ(ω(k) + ω(k1) − ω(k2) − ω(k3))δ(k + k1 − k2 − k3)

× [W (k1)W (k2)W (k3) + W (k)(W (k2)W (k3) − W (k1)W (k3) − W (k1)W (k2))] .

Here we use the standard convention for Fourier transformation in R
3 and

∫
d3k

is understood as the integration over all of R
3.

In a recent series of studies Nazarenko and coworkers reconsider the deriva-
tion of (8.4) from a different perspective. We explain the method in Appendix 18.3.

The kinetic Eq. (8.4) preserves number, momentum, and energy of phonons.
This is also reflected by the formally stationary solutions

Wαβγ (k) = (βω + α · k + γ )−1 (8.5)
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with β > |α| and

γ + (β2 − α2)−1/2(β2 + α2) > 0 , (8.6)

so to have Wαβγ (k) ≥ 0. The solutions (8.5) have infinite energy because of the
divergence at large k. Such states have not been included in our set-up. In particular,
starting from finite energy initial data, the system cannot properly reach thermal
equilibrium.

The additional conservation laws are also reflected in the size dependence
of the thermal conductance. At the high temperature side of the sample on the
average more phonons are created than at the low temperature side. The collisions
conserve momentum. Thus there is a laminar flow of phonons which transports
energy independently of the size of the sample. In distinction, a real fluid has
diffusive energy transport, since no particles are created, resp. destroyed, at the
boundary.

To turn to the issue of wave turbulence, one considers a spatially homogeneous
situation and augments the kinetic equation (8.4) phenomenologically with a
driving term as

∂

∂t
W (k, t) = C(W (t))(k) + �(k)W (k, t) , (8.7)

where as a shorthand the collision operator is denoted by C(W ). One is interested
in the steady state Ws, for which ∂Ws/∂t = 0. From the H -theorem we know that∫

d3kWs(k)−1C(Ws)(k) > 0. Therefore∫
d3k�(k) < 0 . (8.8)

In addition, to have energy and phonon number conservation in the steady state it
must hold that∫

d3kω(k)Ws(k)�(k) = 0 ,

∫
d3kWs(k)�(k) = 0 . (8.9)

We imagine to have a narrow band source of energy at small k and a sink at large
k, compare with (8.7). In the intermediate regime one has to solve then

C(Ws) = 0 . (8.10)

Fig. 3. A four phonon collision with number conservation.
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To be specific let us consider the wave equation with ω(k) = |k|, i.e. ω0 = 0.
Since ω is homogeneous, and so are the collision rates, it is natural to look for
a self-similar solution of (8.10) of the form Ws(k) = |k|−σ . Indeed, besides the
equilibrium values σ = 0, 1, one obtains the solutions

W (e)
s (k) = |k|−5/3 , W (n)

s (k) = |k|−4/3 , dimension d = 3 . (8.11)

As their equilibrium counterpart, the solutions (8.11) have infinite energy because
of ultraviolet divergence. The true steady state for (8.7) has the power law of
(8.11) only in some intermediate regime and the at large |k| negative � supposedly
ensures that

∫
d3kWs(k) < ∞.

The physical meaning of the steady states in (8.11) can be understood through
studying the flux in energy space [10]. It turns out that W (e)

s supports a constant
energy flux directed from small ω to large ω, while W (n)

s supports a constant
phonon number flux directed from large ω to small ω.

9. QUANTIZING PHONONS, LOCALLY QUASIFREE STATES

The basic Hamiltonian (2.8) is readily quantized by regarding qx as multi-
plication operator and substituting −i∂/∂qx for px as acting on the Hilbert space
L2(R, dqx ) attached to the site x ∈ Z

3. To derive the phonon Boltzmann equation
it is convenient to switch immediately to the notation of second quantization and to
work in Fourier space rather than with the spatial lattice. The one-particle Hilbert
space is then

h = L2(T3, dk) (9.1)

out of which we construct the bosonic Fock space through

F =
∞⊕

n=0

(h⊗n)symm . (9.2)

Here (h⊗n)symm is the n-fold tensor product restricted to wave functions symmet-
ric under permutation of labels. On F we define a scalar Bose field with cre-
ation/annihilation operators a(k), a(k)∗, which satisfy the canonical commutation
relations

[a(k), a(k ′)] = 0 = [a(k)∗, a(k ′)∗] , [a(k), a(k ′)∗] = δ(k − k ′) . (9.3)

Properly speaking, one has to smear a(k) to a( f ) = ∫
T3 dk f (k)a(k) with f ∈ h to

have a well-defined operator on Fock space.
In terms of the Bose field a(k) the quantization of H from (2.8) results in

H = H0 + V + V4 (9.4)
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with

H0 =
∫

T3

dkω(k)a(k)∗a(k) ,

V = 1

3
λ

∫
T9

dk1dk2dk3δ(k1 + k2 + k3)
3∏

j=1

(2ω(k j ))
−1/2(a(k j ) + a(−k j )

∗) ,

V4 = λ′
∫

T12

dk1dk2dk3dk4δ(k1 + k2 + k3 + k4)

×
4∏

j=1

(2ω(k j ))
−1/2(a(k j ) + a(−k j )

∗) , λ′ = λ2/18ω2
0 . (9.5)

We added explicitly the stabilizing quartic term. Then H ≥ 0 and we may take
the Friedrich extension to make out of H a self-adjoint operator acting on Fock
space. Physically, the Fock vacuum � corresponds to the ground state of H0 for the
infinitely extended lattice. States ψ ∈ F thus describe local excitations away from
the ground state. In particular, far away from the origin the particles are in their
state of lowest energy. H0 is normalized to have ground state energy zero. Thus
states of finite mean H0-energy, 〈ψ, H0ψ〉F < ∞, are the finite energy excitations
of the harmonic lattice. As discussed already, for the purpose of the kinetic limit
this set-up is of sufficient generality.

The role of the Gaussian measures in the classical model is taken over by the
quasifree states. They can be defined through their moments

〈a(k)∗a(k ′)〉Q = R(k, k ′) ,〈 m∏
j=1

a(k j )
∗

n∏
j=1

a(k ′
j )

〉Q

= δmnperm
{

R(ki , k ′
j )
}

1≤i, j≤n
(9.6)

with perm denoting the permanent of a matrix. Clearly, the positivity of the state
〈·〉Q is ensured only if R ≥ 0 as a quadratic form.

If R is a projection, then the state 〈·〉Q is pure (i.e. given by a vector in F) and
is a coherent state in the usual terminology. Let N denote the number of phonons,

N =
∫

T3

dka(k)∗a(k) . (9.7)

Then

trR =
∫

T3

dk R(k, k) = 〈N 〉Q . (9.8)

Thus R to be of trace class is a sufficient condition for the state 〈·〉Q to live on
Fock space.
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In kinetic theory the building blocks are states which are locally translation
invariant, stationary under the dynamics generated by H0, and have a strictly
positive entropy per unit volume. The obvious candidates are quasifree states
characterized by the covariance

〈a(k)∗a(k ′)〉Q = W (k)δ(k − k ′) , W (k) ≥ 0 . (9.9)

Such a state has infinite energy and is thus outside of Fock space. The required
mathematical framework is well studied [17], but will not be needed here. Instead
we will consider a scale of states in Fock space labelled by ε such that locally a
state of the form (9.9) is approximated in the limit ε → 0.

We still need to compute the entropy per unit volume of a quasifree state, com-
pare with (3.11), (3.12). We choose the periodic box [1, ]3 and a quasifree state
of the form (9.6), (9.9) with discrete k, k ∈ (−1[1, . . . , ])3. The corresponding
density matrix is denoted by ρ and has the entropy

S = −trρ log ρ , (9.10)

trace over Fock space. ρ is of the form Z−1 exp[−∑k λ(k)a∗(k)a(k)] with λ =
log((1 + W )/W ). Therefore

S =
∑

k∈(−1[1,...,])3

((1 + W (k)) log(1 + W (k)) − W (k) log W (k)) (9.11)

which becomes

lim
→∞

−3S =
∫

T3

dk((1 + W (k)) log(1 + W (k)) − W (k) log W (k)) . (9.12)

We now follow the classical intuition and give ourselves a phonon distribution
function W (r, k). Then {〈·〉Q,ε , ε > 0} is a family of quasifree states with the
property that, defining

W ε(y, k) = (ε/2)3
∫

(2T/ε)3

dηei2πy·η〈a(k − εη/2)∗a(k + εη/2〉Q,ε (9.13)

for y ∈ (εZ)3, one has

lim
ε→0

W ε(�r�ε, k) = W (r, k) . (9.14)

Note that ∑
y∈(εZ/2)3

∫
T3

dkW ε(y, k) = 〈N 〉Q,ε , (9.15)

which means that

〈N 〉Q,ε ∼= ε−3 (9.16)
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under the condition (9.14). We impose 〈·〉Q,ε as the scale of initial states. Adopting
the central assumption of kinetic theory, the state 〈·〉t/ε at the long time ε−1t is well
approximated by a locally quasifree state, which, as to be argued in more detail in
the following section, results in the phonon Boltzmann equation for the quantized
lattice vibrations.

10. DERIVATION OF THE PHONON BOLTZMANN EQUATION

(QUANTIZED MODEL)

We follow the scheme of Section 6 and use atomic units. The evolution
equations are still given by (6.3), now interpreted as Heisenberg equations for the
quantized field. As major difference to Section 6, the order of the field operators
must be respected. Let 〈·〉t be the state at time t under the dynamics e−i Ht with
initial quasifree state as in (9.6), (9.13). The two-point function still satisfies (6.4).
However, in the expression (6.11) for G(q, p, t, s) we used the commutativity of
the fields to lump terms together, which has to be undone in the quantum context.
Also, the Gaussian factorization (6.12) is to be replaced by the expectation over
the locally quasifree state 〈·〉s , which amounts to, for example,

〈a(k1)a(k2)∗a(k3)∗a(k4)〉s = 〈a(k1)a(k2)∗〉s〈a(k3)∗a(k4)〉s

+〈a(k1)a(k3)∗〉s〈a(k2)∗a(k4)〉s

+〈a(k1)a(k4)〉s〈a(k2)∗a(k3)∗〉s . (10.1)

Note that the last term on the right vanishes by assumption. Transferred to the
Wigner function the ordering results in

ε3〈a(k − εη/2)∗a(k + εη/2)〉s/ε = Ŵ ε(η, k, s) ,

ε3〈a(k + εη/2)a(k − εη/2)∗〉s/ε = δ(η) + Ŵ ε(η, k, s) . (10.2)

Otherwise the computation of Section 6 can be repeated verbatim. Perhaps
somewhat unexpected at first glance, the collision term is modified only through
a linear term and becomes

γ

∫
T6

dk1dk2(ω(k)ω(k1)ω(k2))−1(2δ(ω(k) + ω(k1) − ω(k2))

× δ(k + k1 − k2)(W̃ (r, k1)W (r, k2) + W (r, k)W (r, k2) − W (r, k)W (r, k1))

+ δ(ω(k) − ω(k1) − ω(k2))δ(k − k1 − k2)(W (r, k1)W (r, k2) − W (r, k)W̃ (r, k1)

− W (r, k)W (r, k2))) , (10.3)

where

W̃ (r, k) = 1 + W (r, k) . (10.4)
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Properties of the Boltzmann equation are more readily seen by writing the col-
lision operator with an apparent cubic nonlinearity. This results in the conventional
form of the phonon Boltzmann equation,

∂

∂t
W (r, k, t) + 1

2π
∇ω(k) · ∇r W (r, k, t) (10.5)

= γ

∫
T6

dk1dk2(ω(k)ω(k1)ω(k2))−1{2δ(ω(k) + ω(k1) − ω(k2))δ(k + k1 − k2)

× (W̃ (r, k, t)W̃ (r, k1, t)W (r, k2, t) − W (r, k, t)W (r, k1, t)W̃ (r, k2, t)) (I)

+ δ(ω(k) − ω(k1) − ω(k2))δ(k − k1 − k2)

× (W̃ (r, k, t)W (r, k1, t)W (r, k2, t) − W (r, k, t)W̃ (r, k1, t)W̃ (r, k2, t))} . (II)

The Boltzmann equation (10.5) is one of our central results. It reduces to the
classical phonon equation (4.7) through omitting the tilde in (10.3).

11. FEYNMAN DIAGRAMS

The iteration leading to Eq. (6.6) suggests to develop more systematically the
time-dependent perturbation theory. In this section we will do the first step in a
program which needs to be completed. For simplicity let us assume an initial state
which is translation invariant and quasifree with covariance

〈a(k)〉Q = 0 , 〈a(k)a(k ′)〉Q = 0 ,

〈a(k)∗a(k ′)〉Q = δ(k − k ′)W (k) , (11.1)

compare with (9.6). By the magic of Wigner functions, a slowly varying initial
measure would require small modifications only. Since there is no spatial variation,
kinetic scaling amounts to merely consider the long times ε−1t . By translation
invariance

〈a(k)∗a(k ′)〉t/ε = δ(k − k ′)W ε(k, t) . (11.2)

As discussed already, one expects that

lim
ε→0

W ε(k, t) = W (k, t) (11.3)

and W (k, t) to satisfy the spatially homogeneous version of the phonon Boltzmann
Eq. (10.5). Let us set

W (k, 1) = 1 + W (k) , W (k,−1) = W (k) (11.4)

and, as before,

φ(k, k1, k2) = λ(8ω(k)ω(k1)ω(k2))−1/2 . (11.5)
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Then the phonon Boltzmann equation (10.5) is written more concisely as

∂

∂t
W (k, σ, t) = 4π

∑
σ1,σ2=±1

∫
T6

dk1dk2φ(k, k1, k2)2

× δ(σω + σ1ω1 + σ2ω2)δ(σk + σ1k1 + σ2k2)

×
(

W (k1, σ1, t)W (k2, σ2, t)

+σσ1W (k, σ, t)
∑

σ̃=±1

W (k2, σ̃ , t)
)

(11.6)

with initial conditions from (11.1). Here we use as shorthand ω = ω(k),
ω(k1) = ω1, ω(k2) = ω2. Note that the term with σ, σ1, σ2 = 1 vanishes, since
ω(k) + ω(k1) + ω(k2) ≥ 0.

To derive (11.6) from the microscopic dynamics, we take the time-dependent
perturbation theory as starting point. The Heisenberg equations for the quantum
field are given by (6.3) with the shorthand (6.1). Inserting them in time-integrated
form yields the identity〈 m∏

j=1

a(k j , σ j )
〉
t
= exp

[
i t
( m∑

j=1

σ jω(k j )
)]〈 m∏

j=1

a(k j , σ j )
〉Q

+i
√

ε

∫ t

0
ds exp

[
i(t − s)

( m∑
j=1

σ jω(k j )
)]

( m∑
=1

∑
σ ′,σ ′′=±1

σ

∫
T6

dk ′dk ′′φ(k, k ′, k ′′)δ(−σk + σ ′k ′ + σ ′′k ′′)

〈( −1∏
j=1

a(k j , σ j )

)
a(k ′, σ ′)a(k ′′, σ ′′)

m∏
j ′=+1

a(k j ′ , σ j ′
〉
s

)
. (11.7)

Note that the operator ordering is properly maintained. To generate the perturbation
series for W ε(k, t) one starts with m = 2. Then on the right there is a product of 3
a’s for which one substitutes (11.7) with m = 3, etc. Finally one averages explicitly
over the initial quasifree state 〈·〉Q. This yields

〈a(q, σq )∗a(p, σp)〉t/ε = δ(σq ,−σp)δ(q − p)
(

W (q, σq ) +
∞∑

n=1

W ε
n (q, σq , t)

)
.

(11.8)
Let us postpone the issue of the convergence of the sum over n to the end of this

section and first discuss W ε
n for each n separately.
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δ(σq ′ ,−σp)δ(q − p)W ε
n (q, σ1, t) is a sum of oscillating integrals. The sum-

mation comes from three sources
– the sum over σ ′, σ ′′ in (11.7)
– the sum over  in (11.7)
– the sum over all oriented pairings due to the average in the initial quasifree

state,〈
2n∏
j=1

a(k j , σ j )

〉Q

=
∑

pairings π,π ′

n∏
i=1

〈a(kπ(i), σπ(i))a(kπ ′(i), σπ ′(i))〉Q . (11.9)

Oriented means that in 〈a(kπ(i), σπ(i))a(kπ ′(i), σπ ′(i))〉Q on the right hand side the
operators appear in the same order as on the left hand side. Since the integrals
have a rather complicated structure, it is convenient to visualize them as Feynman
diagrams.

A Feynman diagram is an oriented graph with labels. We first construct the
graph and then the labelling. The graph uses as “backbone” 2n + 2 equidistant
horizontal level lines labelled from 0 to 2n + 1. The graph itself consists of two
binary downward trees. The roots are two vertical bonds from line 2n + 1 to 2n.
These bonds are continued downwards. At level m there is exactly one branch
point with two branches. Branches do not cross, see Fig. 4. Thus at level 0 there
are 2n + 2 vertical bonds (branches). They are connected according to the pairing
rule resulting in n + 1 pairs. Thereby the graph consists of internal lines and two
roots (external legs). The Feynman graph is oriented, with lines pointing either up
(σ = +1) or down (σ = −1). If there is no branching the orientation is inherited
from the continuing vertical bond in the level above. At a pairing the orientation
must be maintained. Thus at level 0 a branch with an up arrow can be paired only
with a branch with a down arrow. If the pairing is pointing to the left, it corresponds
to the order 〈a∗a〉Q in (11.9), while a pairing pointing to the right corresponds

Fig. 4. Example of a Feynman diagram at order n = 2.
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to 〈aa∗〉Q. By construction, each internal line has two orientations and starts and
ends at a branch point.

Next we insert the labels. The level lines 0 to 2n + 1 are labelled by times
0 < t1 . . . < t2n < t . The left root carries the label q while the right root carries
the label p. Each internal line is labelled with a wave number k.

To each Feynman diagram one associates an integral through the following
steps.

(i) The time integration is over the simplex 0 ≤ t1 . . . ≤ t2n ≤ t as dt1 . . . dt2n .
(ii) The wave number integration is over all internal lines as

∫
dk1 . . .

∫
dkκ ,

where κ = 3n − 1 is the number of internal lines.
(iii) One sums over all orientations of the internal lines.

The integrand is a product of 3 factors.

(iv) There is a product over all branch points.

At each branchpoint there are a root, say wave vector k1 and orientation σ1, and
two branches, say wave vectors k2, k3 and orientations σ2, σ3. Then each branch
point carries the weight

δ(−σ1k1 + σ2k2 + σ3k3)σ1φ(k1, k2, k3) . (11.10)

If one regards the wave vector k as a current with orientation σ , then (4.6) expresses
Kirchhoff’s rule for conservation of the current.

(v) By construction each bond carries a time difference tm+1 − tm , a wave
vector k, and an orientation σ . Then to this bond one associates the phase factor

exp[i(tm+1 − tm)σω(k)/ε] . (11.11)

The second factor is the product of such phase factors over all bonds.
(vi) The third factor of the integrand is

n+1∏
j=1

W (k j , σ j ) , (11.12)

where k1, . . . , kn+1 are the labels of the branches between level 0 and level 1.
σ j = 1 if the pairing line is oriented to the right and σ j = −1 if oriented to the
left.

(vii) Finally there is the prefactor (−1)nε−n .
δ(σq ,−σp)δ(q − p)W ε

n (q, t) is the sum over all integrals corresponding to
Feynman graphs with 2n + 2 horizontal time slices, given the external legs q, p
with orientations σq , σp.

To illustrate the method let us consider the case n = 1. There are then
(2 · 3) · 3 · 4 = 72 diagrams. There is a group of 24 diagrams for which each of
the two trees branches once. Among them there are 8 diagrams with the two trees
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disconnected. They yield the term δ(q)δ(p)O(ε) provided ω(0) > 0. According to
the rules listed, the remaining 16 diagrams sum up to the oscillating integral

I +
ε = ε−12δ(σq ,−σp)

∫ t

0
dt2

∫ t2

0
dt1

∑
σ1,σ2=±1

∫
dk1dk2φ(q, k1, k2)φ(p, k1, k2)

× (exp[i(t2 − t1)(σqω(q) − σ1ω(k1) − σ2ω(k2))/ε] + c.c.)

× δ(−σqq + σ1k1 + σ2k2)δ(−σp p − σ1k1 − σ2k2)

× W (k1,−σ1)W (k2,−σ2) . (11.13)

The limit ε → 0 is covered by the argument from (6.20) and

lim
ε→0

I +
ε = δ(σq ,−σp)δ(q − p)4π

∫ t

0
dt2

∑
σ1,σ2=±1

∫
dk1dk2φ(q, k1, k2)2

× δ(σqω(q) + σ1ω(k1) + σ2ω(k2))δ(σqq + σ1k1 + σ2k2)

× W (k1, σ1)W (k2, σ2) . (11.14)

Secondly there is a group of 48 diagrams for which one of the two trees does
not branch. Among them there are 16 diagrams which have an internal line with
k = 0. They cancel amongst each other by symmetry. The remaining 32 diagrams
sum up to I −

ε . Its oscillating integrals are handled as for I +
ε . Thereby one obtains

lim
ε→0

I −
ε = δ(σq ,−σp)δ(q − p)4π

∫ t

0
dt2

∑
σ1,σ2=±1

∫
dk1dk2φ(q, k1, k2)2

× δ(σqω(q) + σ1ω(k1) + σ2ω(k2))δ(σqq + σ1k1 + σ2k2)

× σqσ1W (q, σq )(W (k2, 1) + W (k2,−1)) . (11.15)

We note the analogy with the discussion in Section 6. The computation there
is more lengthy, since spatial variation is included. Ggain corresponds to I +

ε , G loss to
I −
ε , Gsub1 to the 8 diagrams with both trees branched, and Gsub2 to the 16 diagrams

with only one tree branched.
Kinetic theory claims that at any order diagrams divide into leading and

subleading. The subleading diagrams vanish in the limit ε → 0 while the leading
ones have a finite limit. In fact the leading diagrams can be characterized very
concisely.
Kinetic Conjecture: In a leading Feynman diagram the Kirchhoff rule never
forces an internal wave number 0 i.e. a factor of the form δ(k j ) with some wave
vector k j . In addition, the sum of the 2(n − m + 1) phases from the bonds between
level lines 2m and 2m + 1 vanishes for every choice of internal wave numbers.
This cancellation must hold for m = 0, . . . , n.

1078



The Phonon Boltzmann Equation, Weakly Anharmonic Lattice Dynamics

By a tricky combinatorial argument [18] it can be shown that the sum of all
leading, according to the Kinetic Conjecture, diagrams satisfy a set of differential
equations, which in analogy to the kinetic theory of gases is called Boltzmann
hierarchy. Let ( f1, f2, . . .) be a vector of functions where fn(k1, σ1, . . . , kn, σn) is
symmetric in its arguments. We define the collision operator Cn,n+1 through

(Cn,n+1 fn+1)(k1, σ1, . . . , kn, σn)

= 4π

n∑
=1

∑
σ ′,σ ′′=±1

∫
T6

dk ′dk ′′φ(k, k ′, k ′′)2

× δ(σω + σ ′ω′ + σ ′′ω′′)δ(σk + σ ′k ′ + σ ′′k ′′)

× [ fn+1(k1, σ1, . . . , k−1, σ−1, k ′, σ ′, . . . , k ′′, σ ′′)

+ σσ
′ ∑
σ̃=±1

fn+1(k1, σ1, . . . , kn, σn, k ′′, σ̃ )] . (11.16)

Then the Boltzmann hierarchy reads

d

dt
fn(t) = Cn,n+1 fn+1(t) . (11.17)

Note that the result from (11.14), (11.15) can be stated as

lim
ε→0

(I +
ε + I −

ε ) = t(C1,2 f2)(k1, σ1) (11.18)

provided one sets

f2(k1, σ1, k2, σ2) = W (k1, σ1)W (k2, σ2) . (11.19)

The Boltzmann hierarchy has the property that initial factorization of fn is
maintained in time,

fn(k1, σ1, . . . , kn, σn, t) =
n∏

j=1

f (k j , σ j , t) (11.20)

and each factor satisfies the Boltzmann equation

∂

∂t
f (k, σ, t) = 4πλ2

∑
σ ′,σ ′′=±1

∫
T6

dk ′dk ′′(8ωω′ω′′)−1

× δ(σω + σ ′ω′ + σ ′′ω′′)δ(σk + σ ′k ′ + σ ′′k ′′)

× [ f (k ′, σ ′, t) f (k ′′, σ ′′, t)

+ σσ ′ f (k, σ, t)( f (k ′′, 1, t) + f (k ′′,−1, t))] . (11.21)

For the particular choice

f (k, 1) = 1 + W (k) , f (k,−1) = W (k) (11.22)
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Equation (11.21) agrees with the phonon Boltzmann equation (11.6). Thereby the
Kinetic Conjecture amounts to the assertion

lim
ε→0

W ε
n (k, σ, t) = 1

n!
tn(C1,2 . . . Cn,n+1 fn+1)(k, σ ) (11.23)

with the initial fn factorized as in (11.19) and single factor (11.22).
The difference between the quantized theory, discussed so far, and the classi-

cal theory is surprisingly minor when viewed on the level of Feynman diagrams.
The classical a-field commutes, which however does not simplify the structure
of the diagram. Only in the average of the initial state quasifree is replaced by
Gaussian which according to (11.9) induces the modification 〈aa∗〉G = 〈a∗a〉G.
Thus the classical phonon Boltzmann equation is obtained by setting the initial
conditions for the hierarchy as

fn(k1, σ1, . . . , kn, σn) =
n∏

j=1

W (k j ) . (11.24)

One checks that (11.21) indeed coincides with (4.7).
So far we avoided the issue of the convergence of the series in (11.8). At

order n there are (2n − 1)!(2n)!2n/n! Feynman diagrams. If W is bounded, then
a single Feynman diagram is of order cnt2n/(2n)! with some suitable constant c.
Thus, unless cancellations are used, even at finite ε the sum over n does not
converge. The situation improves in the kinetic level. At order n there are only
(48)nn! leading diagrams. If emax of (5.8) is bounded, then each diagram is of
order cn(emax)ntn/n!. Therefore in the limit the sum over n in (11.23) converges
provided t is sufficiently small.

We conclude that the most immediate project is to establish (11.23), which
means that all subleading diagrams vanish in the limit ε → 0. This would be a
step further when compared to the investigation(19), see also [20, 21]. Of course a
complete proof must deal with the uniform convergence of the series in (11.8).

12. PROPERTIES OF THE QUANTUM PHONON

BOLTZMANN EQUATION

The Boltzmann equation (10.5) for the quantized phonons differs somewhat
from its classical cousin (4.7). But the basic properties remain unaltered. As before,
energy is locally conserved. The entropy functional has to be modified, but results
again in a positive entropy production. Most significantly the stationary distribution
functions are now the one-parameter family of Bose-Einstein distributions at zero
chemical potential,

Wβ(k) = (eβω(k) − 1
)−1

. (12.1)
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In the high temperature limit, β → 0, they reduce to (βω(k))−1, which are the sta-
tionary solutions of the phonon Boltzmann equation for classical lattice dynamics.

In the sequel we discuss each item separately.
(i) Energy. The properties (7.1) to (7.3) remain intact. One only has to

show that
∫

T6 dkω(k)C(W )(k) = 0. Inserting the collision operator from (10.5)
one obtains∫

T9

dk1dk2dk3(ω(k1)ω(k2)ω(k3))−1{2δ(ω(k1) + ω(k2) − ω(k3))δ(k1 + k2 − k3)

×ω(k1)(W̃ (k1)W̃ (k2)W (k3) − W (k1)W (k2)W̃ (k3)) + δ(ω(k1) − ω(k2) − ω(k3))

× δ(k1 − k2 − k3)ω(k1)(W̃ (k1)W (k2)W (k3) − W (k1)W̃ (k2)W̃ (k3))}

=
∫

T9

dk1dk2dk3(ω(k1)ω(k2)ω(k3))−1δ(ω(k1) + ω(k2) − ω(k3))δ(k1 + k2 − k3)

×ω(k3)(W̃ (k1)W̃ (k2)W (k3) − W (k1)W (k2)W̃ (k3) + W̃ (k3)W (k1)W (k2)

−W (k3)W̃ (k1)W̃ (k2)) = 0 , (12.2)

where as in (7.4) in the first summand we symmetrized 2ω(k1) to ω(k1) + ω(k2)
and used energy conservation, while in the second summand we employed the
cyclic substitution k1 → k3, k3 → k2, k2 → k1.
(ii) Entropy. As can be seen from (9.12), the local entropy is defined through

s(r, t) =
∫

T3

dk
(
W̃ (r, k, t) log W̃ (r, k, t) − W (r, k, t) log W (r, k, t)

)
. (12.3)

It satisfies the semi-conservation law

∂

∂t
s(r, t) + ∇ · js(r, t) = σ (r, t) (12.4)

with a positive entropy production σ . The entropy flow is easily deduced to

js(r, t) = (2π )−1
∫

T3

dk∇ω(k)(W̃ (r, k, t) log W̃ (r, k, t)

−W (r, k, t) log W (r, k, t)) . (12.5)

To compute the entropy production we symmetrize as in the case of the energy,
the role of ω(k1) being taken over by log(W̃ (r, k1, t)/W (r, k1, t)). Then

σ (r, t) = γ

∫
T9

dk1dk2dk3(ω(k1)ω(k2)ω(k3))−1δ(ω(k1) + ω(k2) − ω(k3))

× δ(k1 + k2 − k3) f (W̃ (r, k1, t)W̃ (r, k2, t)W (r, k3, t),

× W (r, k1, t)W (r, k2, t)W̃ (r, k3, t)) (12.6)
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with

f (x, y) = (x − y) log(x/y) . (12.7)

Clearly, σ (r, t) > 0 unless x = y in (12.7), i.e. unless

W̃ (k1)W̃ (k2)W (k3) = W (k1)W (k2)W̃ (k3) (12.8)

on the set of (k1, k2, k3)’s satisfying the constraints

ω(k1) + ω(k2) = ω(k3) , k1 + k2 = k3 , (12.9)

where we regard W and ω as continued periodically to all of R
3. Thus σ = 0 if

and only if (12.8) holds for all (k1, k2, k3) ∈ R
9 on the set defined by (12.9).

The total entropy is

S(t) =
∫

d3rs(r, t) . (12.10)

From (12.4) it follows that

d

dt
S(t) ≥ 0 , (12.11)

which is the analogue of Boltzmann’s H-theorem.
(iii) Stationary solutions. We consider a spatially homogeneous system for

which the Boltzmann Eq. (10.5) reduces to

∂

∂t
W = C(W ) . (12.12)

By definition a stationary solution has to satisfy C(W ) = 0. This equality looks
rather unapproachable and a better strategy is to use that for a solution to be
stationary its entropy production has to vanish. To make the resulting functional
Eq. (12.8) and (12.9) more tractable we introduce as auxiliary quantity

ψ = log(W/W̃ ) . (12.13)

Then (12.8) becomes additive as

ψ(k1) + ψ(k2) = ψ(k3) . (12.14)

Proposition 12.1. Let the ergodicity condition (E) be satisfied and let
det(Hess ω) = 0 at most on a set of codimension 1. Let ψ : T

3 → R be twice
continuously differentiable and satisfy the functional equation

ψ(k1) + ψ(k2) = ψ(k1 + k2) (12.15)

on the set �ω = {(k1, k2) ∈ T
6 | ω(k1) + ω(k2) = ω(k1 + k2)}. Then necessarily

ψ(k) = aω(k) , a ∈ R . (12.16)
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Proof: In spirit we follow Cercignani and Kremer.(22) We set k1 = k , k2 = k ′.
The collisional invariant ψ(k) + ψ(k ′) is constant on the set {(k, k ′) ∈ T

6 | ω(k) +
ω(k ′) = const , k + k ′ = const}. Therefore there exists a function φ : R × T

3 →
R such that

ψ(k) + ψ(k ′) = φ(ω(k) + ω(k ′) , k + k ′) . (12.17)

We set k = (k1, k2, k3), ω = ω(k), ω′ = ω(k ′),

∂ωφ(ω, k) = ∂φ(ω, k)/∂ω , ∂αφ(ω, k) = ∂φ(ω, k)/∂kα , (12.18)

α = 1, 2, 3, and differentiate (12.17) with respect to k, k ′. Then

∂αψ(k) = ∂ωφ(ω + ω′, k + k ′)∂αω + ∂αφ(ω + ω′, k + k ′) ,

∂αψ(k ′) = ∂ωφ(ω + ω′, k + k ′)∂αω′ + ∂αφ(ω + ω′, k + k ′) . (12.19)

Subtracting and symmetrizing yields

(∂αψ(k) − ∂αψ(k ′))(∂βω(k) − ∂βω(k ′))

= (∂βψ(k) − ∂βψ(k ′))(∂αω(k) − ∂αω(k ′)) . (12.20)

Differentiating with respect to k,

∂α∂γ ψ(k)(∂βω(k) − ∂βω(k ′)) + (∂αψ(k) − ∂αψ(k ′))∂β∂γ ω(k)

= ∂β∂γ ψ(k)(∂αω(k) − ∂αω(k ′)) + (∂βψ(k) − ∂βψ(k ′))∂α∂γ ω(k) , (12.21)

and once more differentiating with respect to k ′,

∂α∂γ ψ(k)∂β∂δω(k ′) + ∂α∂δψ(k ′)∂β∂γ ω(k)

= ∂β∂γ ψ(k)∂α∂δω(k ′) + ∂β∂δψ(k ′)∂α∂γ ω(k) , (12.22)

which holds on �ω.
Let � = {k ∈ T

3, det(Hess ω(k)) �= 0}. As proven in Appendix 18.4, if
k, k ′ ∈ �, then the only solution to (12.22) reads

∂α∂βψ(k) = a(k)∂α∂βω(k) , ∂α∂βψ(k ′) = a(k)∂α∂βω(k ′) (12.23)

with some constant a(k) independent of k ′. We choose now k ′′ ∈ � linked through
a collision to k ′ and conclude that also

∂α∂βψ(k ′′) = a(k)∂α∂βω(k ′′) . (12.24)

By the ergodicity condition (E) the relation (12.24) extends to

∂α∂βψ(k) = a∂α∂βω(k) (12.25)

on � with some constant a. By continuity (12.25) extends to all of T
3. Integrating

(12.25) yields ψ(k) = aω(k) + b · k + c. b = 0 by continuity of ψ and c = 0 by
(12.15). �
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Remark:

(i) Presumably our result holds under weaker smoothness assumptions on ψ .
The difficulty is that in (12.22) k and k ′ are constrained variables.

(ii) The ergodicity condition may fail because at given k no collision is ad-
mitted by energy conservation. But there are more subtle cases. For ex-
ample Z

3 could be partitioned into two sublattices which are dynamically
disconnected, i.e. the elastic constants α(x) couple only within each sub-
lattice. Then, at best, each sublattice thermalizes by itself and ergodicity
is violated.

(iii) Assume that there is some function, ψ(k), such that
∫

T3 dkψ(k)W (r, k, t)
satisfies a local conservation law in the form (7.2). Then the corresponding
current is necessarily

jψ (r, t) = (2π )−1
∫

T3

dk(∇ω(k))ψ(k)W (r, k, t) (12.26)

and it must hold that ∫
T6

dkψ(k)C(W )(k) = 0 (12.27)

for all W . Repeating the computation in (12.2) leads to∫
T9

dk1dk2dk3(ω1ω2ω3)−1(ψ(k1) + ψ(k2) − ψ(k3))δ(ω1 + ω2 − ω3)

× δ(k1 + k2 − k3)(W̃ (k1)W̃ (k2)W (k3) − W (k1)W (k2)W̃ (k3)) = 0 . (12.28)

Hence ψ is a collisional invariant in the sense of Proposition 12.1. Under
the assumptions stated there, it follows that ψ(k) = aω(k) and energy is
the only local conservation law.

For the case at hand, ω(k) ≥ 0 and W (k) ≥ 0, which implies a < 0.
Thus we have shown that under the ergodicity condition (E) the only
stationary solutions of the spatially homogeneous Boltzmann equation
are

Wβ(k) = (eβω(k) − 1
)−1

, β > 0 . (12.29)

β is fixed through the initial condition as
∫

T3 dkω(k)W (k, t = 0) =∫
T3 dkω(k)Wβ(k) by conservation of energy. Thermodynamically β is

the inverse temperature and the entropy of Wβ according to (12.3) is the
equilibrium entropy of an ideal Bose gas at zero chemical potential.
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13. THE LINEARIZED COLLISION OPERATOR

The thermal conductivity, in the kinetic limit, is determined through the
inverse of the linearized collision operator. We will explain the standard argument
in the following section. Here we merely study the linearized collision operator as
a linear operator in L2(T3, dk).

We consider the spatially homogeneous Boltzmann equation (10.5), which
we write as

∂

∂t
W = C(W ) . (13.1)

Under the ergodicity condition (E) the only stationary solutions of (13.1) are the
thermal Wβ . We fix β and linearize at Wβ , where the convenient way of writing
the perturbation is

W = Wβ + Wβ W̃β f . (13.2)

To linear order in f , (13.1) then becomes

Wβ W̃β

∂

∂t
f = −L f (13.3)

with the linearized collision operator

L f (k) = −γ

∫
T6

dk1dk2(ω(k)ω(k1)ω(k2))−1

× (2δ(ω(k) + ω(k1) − ω(k2))δ(k + k1 − k2)

× ((Wβ(k2) − Wβ(k1))Wβ(k)W̃β(k) f (k)

+ (Wβ(k2) − Wβ(k))Wβ(k1)W̃β(k1) f (k1)

+ (Wβ(k) + W̃β(k1))Wβ(k2)W̃β(k2) f (k2))

+ δ(ω(k) − ω(k1) − ω(k2))δ(k − k1 − k2)

× (−(Wβ(k1) + W̃β(k2))Wβ(k)W̃β(k) f (k)

+ (Wβ(k2) − Wβ(k))Wβ(k1)W̃β(k1) f (k1)

+ (Wβ(k1) − Wβ(k))Wβ(k2)W̃β(k2) f (k2))). (13.4)

In each term we use the δ-constraint which leads to identities of the type

Wβ(k1)Wβ(k2)W̃β(k3) = W̃β(k1)W̃β(k2)Wβ(k3) on ω(k1) + ω(k2) = ω(k3) .

(13.5)
Then (13.4) simplifies to

L f (k) = γ

∫
T6

dk1dk2(ω(k)ω(k1)ω(k2))−1(2δ(ω(k) + ω(k1) − ω(k2))

× δ(k + k1 − k2)W̃β(k)W̃β(k1)Wβ(k2)( f (k) + f (k1) − f (k2))
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+ δ(ω(k) − ω(k1) − ω(k2))δ(k − k1 − k2)W̃β(k)Wβ(k1)Wβ(k2)

× ( f (k) − f (k1) − f (k2))) . (13.6)

Let 〈·, ·〉 denote the inner product in L2(T3, dk). Using once more (13.5), the
quadratic form for L is given by

〈g, L f 〉 = γ

∫
T9

dk1dk2dk3(ω(k1)ω(k2)ω(k3))−1

× δ(ω(k1) + ω(k2) − ω(k3))δ(k1 + k2 − k3)Wβ(k1)Wβ(k2)W̃β(k3)

× (g(k1) + g(k2) − g(k3))( f (k1) + f (k2) − f (k3)) . (13.7)

Thus it is evident that

L∗ = L , L ≥ 0 , Lω = 0 . (13.8)

Note that any zero eigenvector of L , 〈 f, L f 〉 = 0, must be a collisional invariant
in the sense of (12.15). Hence, under the stated assumptions, the eigenvalue zero
is nondegenerate. In the classical limit, β → 0, Wβ and W̃β are to be replaced by
(βω)−1. Then L equals the linearization of (4.7).

The spectral properties of L have not been studied, to our knowledge. But
they seem to fall into the standard folklore picture of kinetic theory. L can be
written as

L f (k) = −
∫

T3

dk ′ A(k, k ′) f (k ′) + V (k) f (k) . (13.9)

The “potential” follows from (13.6) as

V (k) = γ W̃β(k)ω(k)−1
∫

T3

dk1(ω(k1)ω(k + k1))−1

× (2δ(ω(k) + ω(k1) − ω(k + k1))W̃β(k1)Wβ(k + k1)

+ δ(ω(k) − ω(k1) − ω(k + k1))Wβ(k1)Wβ(k + k1)) , (13.10)

while the integral kernel A has the form

A(k, k ′) = 2γ {−(ω(k)ω(k ′)ω(k + k ′))−1W̃β(k)W̃β(k ′)Wβ(k + k ′)

× δ(ω(k) + ω(k ′) − ω(k + k ′)) + (ω(k)ω(k ′)ω(k − k ′))−1W̃β(k)Wβ(k ′)

× W̃β(k − k ′)δ(ω(k) − ω(k ′) + ω(k − k ′)) + (ω(k)ω(k ′)ω(k − k ′))−1

× W̃β(k)Wβ(k ′)Wβ(k − k ′)δ(ω(k) − ω(k ′) − ω(k − k ′))}. (13.11)

Under our assumptions on ω the potential is bounded away from zero, 0 < c− ≤
V (k) but not bounded sine ω0 = 0. For k fixed, A(k, k ′) is concentrated on a set of
codimension 1. The kernel of A2 is a function, but A2(k, k ′) has singular points,
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in particular A2(k, k) = ∞. We conjecture that trA4 < ∞. If so, the bottom of
the continuous spectrum of L is c−. L has a spectral gap and the continuous
spectrum extends to ∞. On the linearized level the homogeneous system relaxes
exponentially fast to equilibrium.

14. THERMAL CONDUCTIVITY

We look for a stationary solution of the Boltzmann equation (10.5), to say

(2π )−1∇ω · ∇r W = C(W ) , (14.1)

which has approximately a linear temperature profile T (r ) = β−1 + ∇T · r with
|∇T | � 1. Of course, the ergodicity condition (E) has to be imposed. On the
left hand side in (14.1) we assume local equilibrium in the form (eω(k)/T (r ) − 1)−1

while on the right hand side we expand W = Wβ + Wβ W̃β f . Then (14.1) becomes

(∇ω · ∇T )ωWβ W̃ββ2 = −L f . (14.2)

Since, as argued before, the zero eigenvalue of L is nondegenerate and the corre-
sponding eigenvector ω is orthogonal to (∇ω)ωWβ W̃β , L can be inverted and

f = −(2π )−1β2 L−1Wβ W̃βω(∇T · ∇ω) . (14.3)

The steady state heat (=energy) flux is then

je = (2π )−1
∫

T3

dk(Wβ + Wβ W̃β f )ω∇ω

= (2π )−2β2〈ω∇ωWβ W̃β, L−1Wβ W̃βω∇ω · ∇T 〉 . (14.4)

The thermal conductivity κ is defined through Fourier’s law je = −κ∇T , hence

καα′(T ) = β2(2π )−2〈Wβ W̃βω∇αω, L−1Wβ W̃βω∇α′ω〉 , β = 1/T . (14.5)

For the case at hand, κ is diagonal, καα′ = δαα′κ , and

κ(T ) = 1

3
T −2(2π )−2〈Wβ W̃βω∇ω , L−1Wβ W̃βω · ∇ω〉 . (14.6)

Inserting Fourier’s law into the local conservation of energy (7.2) yields a
nonlinear diffusion equation for the energy transport,

∂

∂t
e(r, t) = ∇ ·

(
κ(T (e))

dT (e)

de
∇e(r, t)

)
(14.7)

with the thermodynamic relation

e(T ) =
∫

T3

dkωWβ , β = 1/T . (14.8)
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It would be of interest to establish (14.7) as the hydrodynamic limit of the
Boltzmann equation (10.5).

We discuss the qualitative temperature dependence of the thermal conductiv-
ity. At high temperatures, Wβ and W̃β are replaced by (βω)−1. Then

κ(T ) = 1

3
T −1(2π )−2

〈
1

ω
∇ω, (Lcl)

−1 1

ω
· ∇ω

〉
(14.9)

with the classical linearized collision operator

Lcl f (k) = γ

∫
T6

dk1dk2(ω(k)ω(k1)ω(k2))−2

× (2δ(ω(k) + ω(k1) − ω(k2))δ(k + k1 − k2)
(

f (k) + f (k1)

− f (k2)) + δ(ω(k) − ω(k1) − ω(k2))δ(k − k1 − k2)

× ( f (k) − f (k1) − f (k2))
)
. (14.10)

Therefore the temperature dependence is multiplicative and

κ(T ) = θh

T
, T large , (14.11)

with θh determined by (14.9).
At low temperatures the temperature dependence of κ is not so easily acces-

sible. For β → ∞
Wβ(k) ∼= e−βω(k) , (14.12)

which means that the number of energy carrying phonons is greatly reduced. On
the other hand, normal processes conserve momentum and thus do not degrade
the phonon current. Only in umklapp processes, momentum is transferred to
the lattice. But umklapp becomes rare at low temperatures. It is argued in [3],
Chapter 2.2, that the latter effect dominates resulting in the exponential increase

κ(T ) 
 eθ1/T , θl > 0 , T small . (14.13)

It would be of interest to have bounds based directly on (14.5) which confirm such
a low temperature behavior.

For real materials the dependence (14.13) is not so easily resolved, since
the conductivity is dominated by scattering from isotope mass disorder, as will be
discussed in the next section. For mass purified samples the conductance is limited
by the size of the probe.

15. ISOTOPE DISORDER

At low temperatures the thermal conductivity is limited by impurities. Even
for a chemically pure crystal, in their natural abundance the crystal atoms come as a
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random mixture of isotopes. Artifically enriched, resp. purified, samples have also
been manufactured so to provide a test of the predictions by the theory. In the kinetic
limit, the effects of impurities and small anharmonicities are additive. Therefore
we study here random isotope substitution in the harmonic approximation. If mx

denotes the mass of the atom at site x , in the frame of our toy model the equations
of motion read

d

dt
qx (t) = 1

mx
px (t)

d

dt
px (t) = −

∑
y∈Z3

α(y − x)qy(t) − ω2
0qx (t) , x ∈ Z

3 , (15.1)

compare with (2.11). For isotope disorder the mass ratio is of order 10−2. Therefore,
in a good approximation we may set

1

mx
= (1 + √

εξx

)2
, ε � 1 , (15.2)

with {ξx , x ∈ Z
3} a collection of independent, identically distributed random vari-

ables. Let us denote by E the expectation with respect to the ξx ’s, i.e. the disorder
average. We assume E(ξx ) = 0 and |ξx | ≤ c0 so that mx > 0 for sufficiently small
ε as required for mechanical stability.

To derive the kinetic equation we first follow the scheme devised for the weak
nonlinearity, also to emphasize that the structure is in parallel. To mathematically
justify the decoupling step a distinct strategy is required, however, see Section 16.

We rewrite the equations of motion (15.1) in terms of the a-field as defined
in (2.16), which means in terms of the homogeneous system. Since the evolution
is linear, there is no difference between the classical and quantum model, possibly
except for the choice of the initial state and thus the initial Wigner function. One
obtains

d

dt
a(k, σ, t) = iσω(k)a(k, t) − i

√
εσ

∑
σ1=±1

∫
T6

dk1dk2(ω(k)ω(k1))1/2

× δ(−σk + σ1k1 − k2)σ1a(k1, σ1, t )̂ξ (k2) + O(ε) , (15.3)

where we take the quantum framework, to be definite. Compared to (6.3) in
essence one of the a-factors has been replaced be ξ̂ . Since a(k, σ, t) depends on
the disorder, the equations of motion are, so to speak, nonlinear in the couple
(a, ξ̂ ).

The object of interest is the Wigner function

Ŵ ε(η, k, t) = ε3
E(〈a(k − εη/2)∗a(k + εη/2)〉t/ε) (15.4)
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on the kinetic time scale ε−1t . In (15.4) there are two averages, one over
the disorder, E, and one over the initial state. To be physically consistent we
think of a scale of initial states as explained in Sections 3 and 9. Since the
equations of motion are linear, there is however a much wider choice. In the
classical model the initial configuration could be deterministic. Quantum me-
chanically the initial wave function could be in the one-particle space h. All
what is required is that the Wigner function (15.4) (possibly substituting ε3 by
some other prefactor) has a limit at the initial time t = 0. The disorder aver-
age is taken only to avoid extra difficulties in the derivation. Physically one
expects 〈a(k − εη/2)∗a(k + εη/2)〉t/ε to be self-averaging in the limit ε → 0.
More precisely, the random variable

∫
dηdk f (η, k)〈a(k − εη/2)∗a(k + εη/2)〉t/ε,

f a smooth ε-independent test function, will tend with probability one to
a deterministic limit as ε → 0. No disorder average should be needed, in
fact.

Let us see how the arguments from Sections 6 and 10 transcribe to the present
situation. As before the atomic scale is used. Then

d

dt
E(〈a(p)∗a(q)〉t ) = i(ω(p) − ω(q))E(〈a(p)∗a(q)〉t )

+ ε

∫ t

0
dsG(q, p, t − s, s) (15.5)

with

G(q, p, t, s) = −E

[ ∑
σ1=±1

∫
T6

dk1dk2

∑
τ1=±1

∫
T6

dl1dl2(ω(k1)ω(σ1k1 − k2))1/2

× (ω(l1)ω(τ1l1 − l2))1/2̂ξ (k2)̂ξ (l2)(eit(−ω(q)+σ1ω(k1))δ(−p + σ1k1 − k2)

× (δ(q + τ1l1 − l2)σ1τ1〈a(k1, σ1)a(l1, τ1)〉s

+ δ(−σ1k1 + τ1l1 − l2)τ1〈a(l1, τ1)a(q)〉s)

+ eit(ω(p)+σ1ω(k1))δ(q + σ1k1 − k2)
(
δ(−p + τ1l1 − l2)

× σ1τ1〈a(l1, τ1)a(k1, σ1)〉s + δ(−σ1k1 + τ1l1 − l2)τ1〈a(p)∗

× a(l1, τ1)〉s))

]
(15.6)

The homogeneous term vanishes, since E(ξx ) = 0.
There is no need to carry the argument any further, since we have seen it

already. The analogue of the assumption of local stationarity is to factorize, on the
kinetic scale, the disorder average as

E(ξ̂ (k1)ξ̂ (k2)〈a(l1)∗a(q)〉s) ∼= E(ξ̂ (k1)ξ̂ (k2))E(〈a(l1)∗a(q)〉s) , (15.7)
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for example. The rapidly oscillating time integral generates the δ-function for the
energy conservation and makes terms as 〈aa〉 and 〈a∗a∗〉 to vanish. After these
steps only four terms are left which combine into the linear Boltzmann equation
for the limit Wigner function W ,

∂

∂t
W (r, k, t) + 1

2π
∇ω(k) · ∇r W (r, k, t)

= 2πE(ξ 2
0 )ω(k)2

∫
T3

dk1δ(ω(k) − ω(k1))(W (r, k1, t) − W (r, k, t)) . (15.8)

If one wants to compute the thermal conductivity including the isotope dis-
order, one merely has to add to L in (14.2) the impurity scattering in the form

L i f (k) = 2πE(ξ0)2ω2Wβ W̃β

∫
T3

dk1δ(ω(k) − ω(k1))( f (k) − f (k1)) . (15.9)

By energy conservation L i randomizes on each energy shell. Thus the zero eigen-
vectors of L i are of the form h(ω(k)) with arbitrary h. The Planck distribution is
singled out by the anharmonicities and can be thought of as a specific initial con-
dition in the current context. Following the arguments in Section 14, the thermal
conductivity is given through

κ(T ) = 1

3
β2(2π )−2〈Wβ W̃βω∇ω, (L + L i)

−1Wβ W̃βω · ∇ω〉 . (15.10)

In the limit of vanishing anharmonicity, γ → 0, κ can be computed more
explicitly, since, by symmetry k � −k, ∇ω is an eigenfunction of L i. Then

κi(T ) = 1

3
β2(2π )−2

(π

2
E(ξ 2

0 )
)−1

∫
T3

dkWβ W̃β(∇ω)2 1

τ (ω)
(15.11)

with

τ (ω) =
∫

T3

dk1δ(ω − ω(k1)) . (15.12)

If ω0 > 0, κi vanishes exponentially as e−βω0 . If ω0 = 0, the competition between
the divergence of τ (ω) for small ω and the suppression of phonons results in a
dependence as κi(T ) 
 T −1 for T → 0.

16. MAPPING TO A SCHRÖDINGER-LIKE EQUATION

WITH A WEAK RANDOM POTENTIAL

The linear evolution Eq. (15.1) suggests to use time-dependent perturbation
theory. Let us set

A =
(

0 1

 − ω2

0 0

)
, V =

(
0 ξx

0 0

)
. (16.1)
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Then

d

dt

(
q
p

)
= (A + √

εV )

(
q
p

)
(16.2)

and

e(A+√
εV )t = eAt +

∞∑
n=1

εn/2
∫

0≤t1≤...≤tn≤t
dtn . . . dt1eA(t−tn )V eA(tn−tn−1) . . . V eAt1 .

(16.3)
We insert the propagator (16.3) into the definition of the Wigner function and
average over disorder. The leading term is exp[−t(1/2π )∇ω · ∇r ] on the kinetic
scale. The term of order

√
ε vanishes because E(ξx ) = 0 and the term of order ε

yields, when kinetically scaled and taking the limit ε → 0,∫ t

0
dse−(t−s)(1/2π)∇ω·∇r Li e

−s(1/2π)∇ω·∇r W (16.4)

with W the initial Wigner function and Li the linear collision operator of (15.8).
Thus we only have to study systematically the higher orders of the perturbation
series and to convince ourselves that they yield the corresponding time-dependent
perturbation series for (15.8). Unfortunately, while the principle is correct, it will
never lead to a proof, since there are too many terms in the perturbation series.
Even if we postulate that the {ξx } are independent Gaussians, the number of
pairings is n!/2n/2(n/2)! which are balanced by a factor antn/2/(n/2)! from the
time integrations. Thus the series converges only for |t | ≤ t0 with a suitable t0 on
the kinetic time scale.

Erdös and Yau [24] study the one-particle Schrödinger equation with a ran-
dom potential which has a mathematical structure comparable to (16.2). Thus the
problem of an exploding number of terms in the perturbation series also arises.
To circumvent this blockage, they expand only up to N = N (ε) and estimate the
remainder by using the unitarity of the unexpanded Schrödinger evolution. To
copy their method we have to exploit that the energy

H = 1

2

∑
x∈Z3

(1 + √
εξx )2 p2

x +
∑
y∈Z3

α(y − x)qyqx

 (16.5)

is conserved for each realization of the disorder. The energy depends on ξ . This
is rather inconvenient and we transform to new fields such that the flat 2-norm is
conserved. Let us regard

�xy =
∫

T3

dkei2πk·(x−y)ω(k) (16.6)
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as a linear operator in 2 = 2(Z3). Under our assumption � has an exponential
decay in |x − y|, which possibly worsens as ω0 → 0. We define

ψ = (ψ+, ψ−) (16.7)

with components

ψ± = 1√
2

(
�qx ± i

(
1 + √

εξx

)
px

)
. (16.8)

Note that ‖ψ+‖2 = ‖ψ−‖2 = H . Thus the 2-norm of ψ is conserved in time.
The ψ-field evolves according

i
∂

∂t

(
ψ+

ψ−

)
=
(

� 0
0 −�

)(
ψ+

ψ−

)
+ √

ε

(
ξ� + �ξ ξ� − �ξ

−ξ� + �ξ −ξ� − �ξ

)(
ψ+

ψ−

)
,

(16.9)
where ξx is regarded as a multiplication operator, (ξ f )x = ξx fx . We use the short
hand

i
∂

∂t
ψ = (H0 + √

εV
)
ψ , Hε = H0 + √

εV (16.10)

and regard (16.9) as an evolution equation in 2 ⊕ 2. Clearly, Hε is bounded and
Hε = H∗

ε . Thus e−i Hε t is unitary. Physical initial data are constrained to satisfy
(ψ+)∗ = ψ−, but this will be imposed only at the very end.

Since ψ is a 2-spinor, the Wigner function becomes a 2 × 2 matrix. Inserting
the kinetic scaling, one has

W ε
σσ ′(y, k, t) = 2−3

∫
(2T/ε)3

dηei2πy·ηψ̂σ (k − εη/2, t/ε)∗ψ̂σ ′
(k + εη/2, t/ε) ,

(16.11)
σ = ±, σ ′ = ±, with k ∈ T

3 and y ∈ (εZ)3. Note that, because of the definition
(16.8), we deviated slightly from previous conventions. In particular

∫
T3 dkW ε

++
(y, k, t) now acquires the meaning of an energy density at kinetic time t .
The off-diagonal element, W ε

+−(t), picks up the fastly oscillating phase factor
exp[±2iω(k)t/ε]. Hence it vanishes upon time averaging. For example, W ε

+−(t)
determines the difference between kinetic and potential energy, which is indeed a
fast variable. By symmetry W ε

−−(t) is obtained from W++(t) by substituting ω by
−ω. Thus we only have to deal with W ε

++(t).
The Wigner function at fixed t typically oscillates on small scales and only

upon integrating against a smooth test function one expects to have a limit. Thus
let J : R

3 × T
3 → R be a smooth, rapidly decreasing function with its Fourier

transform with respect to the spatial argument denoted by Ĵ . The Wigner function
integrated against J becomes then

〈J, W ε
++[ψ]〉 =

∫
R3

dη

∫
T3

dkψ̂+(k − εη/2)∗ Ĵ (η, k)ψ̂+(k + εη/2) . (16.12)
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We now choose a sequence of initial conditions ψε such that ‖ψε‖ ≤ const and
such that the initial Wigner function has a limit,

lim
ε→0

〈J, W ε
++[ψε]〉 =

∫
R3×T3

J (r, k)µ0(drdk) . (16.13)

In addition one has to impose tightness in the sense that

lim
R→∞

lim
ε→0

sup
∑

|x |>R/ε

∣∣∣ψε
x

∣∣∣2 = 0 . (16.14)

At this level of generality µ0(drdk) is a positive, bounded measure. With ψε as
initial datum the time-evolved field is given by

ψ(t) = e−i Hε tψε . (16.15)

Clearly, the issue is to determine 〈J, W ε[ψ(t/ε)]〉 in the limit ε → 0.
To achieve the existence of the limit one needs two conditions on the disper-

sion relation ω.
(i) The first condition we have met already in Section 5 and requires ω to be a

Morse function, meaning that all critical points of ω are isolated and nondegenerate
(no zero eigenvalue in the quadratic approximation).

(ii) The second condition is the crossing estimate, which refers to the decay
estimate of a particular oscillatory integral over T

3 × T
3. It is too technical to

be stated explicitly here. The crossing estimate is verified for a few particular
dispersion relations [23, 26, 35]. It is not excluded that with improved technology
the crossing estimate can be reduced to the Morse property.

Before stating our result we have to explain what we mean by solution of
the Boltzmann equation (15.8) with a measure as initial condition. The standard
method is to switch to the dual equation and to prove that it is a contraction
semigroup on C(R3 × T

3, R), the space of bounded and continuous functions,
which follows from the key observation that, since ω is Morse, the operator

B f (k) = 2πE
(
ξ 2

0

)
ω(k)2

∫
T3

δ(ω(k) − ω(k ′)) f (k ′)dk ′ (16.16)

satisfies ‖B f ‖ ≤ c‖ f ‖ in C(T3) for some c > 0. In particular the total collision
rate

ν(k) = 2πω(k)2
∫

T3

δ(ω(k) − ω(k ′))dk ′ (16.17)

is continuous, thus bounded. To the Boltzmann equation there is associated the
stochastic process (r (t), k(t)) with state space R

3 × T
3. It is governed by

d

dt
r (t) = 1

2π
∇ω(k(t)) , (16.18)
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where k(t) is a Markov jump process on T
3 with jump rate 2πE(ξ 2

0 )ω(k)2δ(ω(k) −
ω(k ′))dk ′. We define the measure µt (drdk) as the joint distribution of (r (t), k(t))
when started with µ0 as initial measure.

The following theorem is the main result of a joint paper with J. Lukkarinen
[23].

Theorem 16.1. Let ω be a Morse function and satisfy the crossing estimate and
let ψε ∈ 2 ⊕ 2 be uniformly bounded and such that (16.13), (16.14) hold. Then

lim
ε→0

E(〈J, W ε(ψ(t/ε))〉) =
∫

R3×T3

µt (drdk)J (r, k) , (16.19)

where µt is the solution of the Boltzmann equation (15.8) with initial datum µ0.

Remark: The dispersion relations (5.3) and (5.4) with ω0 > 0 are Morse and
satisfy the crossing estimate.

Any description of the methods used in the proof would lead us too far
astray. Let me only emphasize that they are based on techniques developed by
Erdös and Yau(24), see also, (25) for estimating Feynman diagrams and for cut-
ting delicately the perturbation series in an ε-dependent way. In a recent paper
Chen (26) considers the Schrödinger equation on a lattice with nearest neighbor
hopping and a random potential V with V (x), x ∈ Z

3, a collection of indepen-
dent random variables. His estimates greatly helped in our proof. Chen (27) also
shows that for his model the convergence of the Wigner function holds in proba-
bility, which is a strong indication that the same property should hold for isotope
disrder.

17. GUIDE TO THE LITERATURE

17.1. Phonon Boltzmann Equation

I am not an expert in phonon physics and the guide reflects merely my own
reading. The focus is deliberately somewhat narrow and I deal only with the
rigorous derivation and a few basic properties of the phonon Boltzmann equation.

The seminal paper on the subject is R. Peierls(1) from 1929. He is the first
one to write down the phonon Boltzmann equation (10.5). Nordheim(28) follows
a similar path for weakly interacting quantum gases. Peierls’ derivation consists
in a careful application of Fermi’s golden rule. His argument, with variations and
modernized notation, has been repeated many times. A standard reference is the
Handbuch article by Leibfried (2). An excellent textbook discussion is Callaway (5).
I very much enjoyed the monograph by V.L. Gurevich (3). He also applies the Fermi
golden rule but in addition discusses extensively the physical conditions required
for its applicability in the derivation of the Boltzmann equation. As a standard, the
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Fermi golden rule is introduced in the context of the spatially homogeneous system.
Spatial variation is simply added in the most obvious way. A great advantage of
the Wigner function formulation is to incorporate spatial variation from the outset.

Since the most interesting aspects of phonon physics are related to quantiza-
tion, the classical anharmonic crystal tends to be ignored. But in his basic article
Peierls also treats the classical system. Brout and Prigogine(29) provide a more de-
tailed account, which is summarized in the book by I. Prigogine on nonequilibrium
statistical mechanics(30). He and Peierls argue that, through a random phase ap-
proximation, the joint distribution of the a(k)∗a(k) satisfies a diffusion equation in
the high-dimensional phase space. Reducing to the one-particle distribution yields
a nonlinear evolution equation for W (k, t), in spirit similar to the structure one
has in the Kac model of kinetic theory (31,32). At the time such reasoning was very
fashionable. But its underlying assumptions are rather dubious, see Appendix 18.3.

As regards to derivation from the microscopic Hamiltonian model the next
level is to improve on the Fermi golden rule, which started with the work of
van Hove (33) and lead into the development of diagrammatic expansions in parallel
with similar techniques in quantum field theory. This is a vast area, still active
today. A very readable account with focus on weak coupling and Boltzmann type
transport equations is the slim monograph by S. Fujita (8). He discusses the impurity
problem and electron-electron collisions. But he could have treated phonons, as
well. Fujita immediatly employs Wigner functions as a matter of fact, which makes
one wonder who originally pushed this concept as a tool for transport equations.
In his famous paper Wigner (34) introduces the notion but then applies it to the
semiclassical limit of the quantum statistical partition function.

The importance of local stationarity has been stressed mostly in the quarters
of mathematical physics, since it is one central property which needs to be es-
tablished when proving the validity of a macroscopic equation. Erdös, Salmhofer,
and Yau (16) discuss the strongly related problem of electron collisions in the same
spirit as done here. Benedetto et al. (19) are more ambitious and, ignoring the
issue of absolute convergence, study the dominant terms of the time-dependent
perturbation series in the kinetic limit. Most likely, their techniques extend to the
present case.

The harmonic lattice with isotope disorder is in its structure rather similar
to a one-particle Schrödinger equation with a weak random potential. We refer
to24−27,35 for recent advances and the derivation of the corresponding kinetic
equation. Our Theorem 14.1 relies on their work.

Bal, Komorowski, and Ryzhik(36) study the continuum wave equation with a
weakly disordered index of refraction. They consider a high frequency approxi-
mation and prove that in this limit the Wigner function is governed by (15.8) with
the jump collision operator replaced by a spherical Laplacian, which turns out to
by the small angle approximation to the collision operator in (15.8).
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Compared to its famous sister the phonon Boltzmann equation has received
little mathematical attention, for no good reason. While we expect that much
of the technology developed in the context of the Boltzmann equation carries
over, we point out that the phonon case has two simplifying features: The wave
vector space is compact and more importantly the velocity, ∇ω(k), is uniformly
bounded. How far this will carry, only a detailed study can show. The derivation of
hydrodynamics should be more accessible, since the Boltzmann equation has only
a single conservation law and its corresponding nonlinear diffusion Eq. (14.7) has
a global solution, say in a finite macroscopic box with initial data bounded away
from 0.

17.2. Energy Transport in Anharmonic Chains

Classical anharmonic chains are a challenging test ground for the numerical
integration of Newton’s equation of motion ever since the seminal work of Fermi,
Pasta and Ulam(37). With increasing computer power steady state current transport
for chain lengths up to 104, in exceptional cases even 105, are reported. These
studies mostly investigate strong anharmonicities and are thus only loosely related
to the kinetic theory discussed here. For this reason we merely refer to a few review
articles. Jackson(37) summarizes to work up to 1978, an authorative 2003 update
being Lepri, Livi, and Politi(39). Bonetto, Lebowitz, and Rey–Bellet(40) emphasize
more theoretical aspects, in particular large deviations and the fluctuation theorem.

The numerical simulations available provide no clear evidence, whether ki-
netic theory is applicable in dimension one (and two). In the kinetic theory of
gases collisions in one dimension are degenerate, since particles just pass through
each other. On the other hand for lattice dynamics three phonon processes are non-
degenerate, as can be checked explicitly for the dispersion relation (5.4). Therefore,
in general, the collision operator does not vanish. Ergodicity is more questionable.
For our standard example (5.4) at ω0 = 0 the components [− 1

2 , 0] and [0, 1
2 ] are

not linked through collisions. As ω0 increases these components shrink. In their
steady state the phonon current would not vanish. Other couplings, four phonon
processes, or thermal boundary drive could restore ergodicity. Whether the mi-
croscopic model for small but fixed anharmonicity has regular energy transport
remains to be studied. Only some loosely related results are available. Aoki and
Kusnezov(41) numerically simulate the case ω0 = 0, λ = 1 and report good evi-
dence for normal heat conduction, i.e. a steady state energy current proportional to
1/N with N the chain length. For the same model the current-current momentum
and energy correlation functions are studied in.(42) A variety of other harmonic
nearest neighbor chains with anharmonic on-site potential is investigated in.(43)

Lefevere and Schenkel(44) attempt to expand directly the steady state probability
distribution under thermal boundary conditions. They report the term of order λ.
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From the perspective of kinetic theory the term of order λ2 would be related to the
chain length of order λ−2.

18. APPENDIX

The proofs given below are due to J. Lukkarinen.

18.1. Three Phonon Processes in Case of Nearest Neighbor

Coupling Only

For nearest neighbor coupling the dispersion relation reads

ω(k) =
ω2

0 + 2
3∑

j=1

(1 − cos(2πk j ))

1/2

. (18.1)

We prove that

ω(k) + ω(q) − ω(k + q) ≥ ω0/2 (18.2)

for all q, k ∈ T
3. Therefore in this case three phonon collisions are prohibited by

energy conservation.
We set z = (z1, z2, z3) and

z j (k) = i

(√
a − 1√

a
e−i2πk j

)
, a > 1 . (18.3)

Then by direct computation |z(k)| = ω(k) with ω0 determined uniquely by a. We
find

|ω(k + q) − ω(k)| ≤ ‖z(k + q)| − |z(k)‖ ≤ |z(k + q) − z(k)| (18.4)

and

|z(k + q) − z(k)|2 = 1

a
|z0(q)|2 ≤ |z0(q)|2 (18.5)

with z0 = z at a = 1. Therefore

ω(k) + ω(q) − ω(k + q) ≥ ω(q) − |ω(k + q) − ω(q)|
≥ ω(q) − |z0(q)| = (ω2

0 + |z0(q)|2)1/2 − |z0(q)| ≥ ω0/2 (18.6)

for all |z0(q)|2 ≥ 0.

18.2. Entropy as the Logarithm of Phase Space Volume

Garrido, Goldstein, and Lebowitz(45), see also [46] argue that whenever a
suitable set of “macrovariables” evolves in time according to an autonomous
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deterministic law, then the entropy functional, defined as the logarithm of the
phase volume associated to specified values of the macrovariables, is increasing
in time. A system of weakly interacting phonons should be no exception and we
will explain why.

Notationally it is convenient to choose the wave number torus as T
3 = [0, 1]3.

If the lattice volume is [1, . . . , ]3, then the wave numbers are discretized as
k ∈ (T)3 = (−1[1, . . . , ])3. We partition the unit torus into cubes 
 j of side
length δ, δM = 1, j = 1, . . . , M3. Accordingly we set

Hj =
∑

k∈
 j ∩(T)3

a(k)∗a(k) (18.7)

as a function on phase space (R6)
3
. The Hj ’s are the macrovariables. They are

assumed to take a value close to 3e j with

e j = δ3
∫


 j

d3kW (k) . (18.8)

Let e = (e1, . . . , eM3 ). The corresponding region in phase space is

�(e, δ, ν) = {(q, p) ∈ (R6)
3 |3(e j − ν) ≤ Hj ≤ 3(e j + ν) , j = 1, . . . , M3} .

(18.9)
Then, using the equivalence between mirocanonical and canonical ensemble,

lim
ν→0

lim
→∞

−3 log |�(e, δ, ν)| =
(
δ3

M3∑
j=1

log e j

)
+ log π + 1 . (18.10)

If one now refines the partitioning into cubes by letting δ → 0, one arrives at the
entropy functional ∫

T3

d3k(log W (k) + log π + 1) (18.11)

in accordance with (3.12).
The quantum case is rather similar, once it is realized that the operators from

(18.7) are a family of commuting operators. The conditions in (18.9) define a
projection operator P(e, δ, ν) on bosonic Fock space and

lim
ν→0

lim
→∞

−3 log trP(e, δ, ν) =
(

δ3
M3∑
j=1

((1 + e j ) log(1 + e j ) − e j log e j

)
.

(18.12)

As before, upon refining the partition by letting δ → 0 one arrives at the entropy
functional∫

T3

d3k((1 + W (k)) log(1 + W (k)) − W (k) log W (k)) (18.13)

in accordance with (9.11).
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As to be expected on general grounds [45]and as confirmed by
Propositon 12.1, the thus defined entropy is increasing in time when W (k, t)
evolves according to the phonon Boltzmann equation.

18.3. The Brout-Prigogine Equation

In the context of wave turbulence, over recent years the validity of the Boltz-
mann transport equation has been scrutinized with the aim to understand the ne-
cessity for corrections.(47−49) One part of the enterprise are numerical simulations
testing the validity of Gaussian local statistics(50,51). In these works the authors
follow the Brout-Prigogine scheme.(29,30) Since it differs from our approach, to
comment on their method might be instructive.

We consider the finite volume � = [1, . . . , ]3 ⊂ Z
3. With periodic boundary

conditions our Hamiltonian reads

H = 1

2

∑
x∈�

p2
x + 1

2

∑
x,y∈�

αp(x, y)qx qy + 1

3

√
ε
∑
x∈�

q3
x , (18.14)

where αp are the periodized elastic constants and includes ω2
0. We now rotate

q, and p, such that αp(x, y) becomes diagonal. It has the eigenvalues ω2
k with

k ∈ �∗ = (−1[1, . . . , ])3, the dual lattice. If q̃k , p̃k denotes the new coordinates
and momenta, we further switch canonically to action-angle variables through

qk = (Jk/ωk)1/2 cos αk , p̃k = (ωk Jk)1/2 sin αk , (18.15)

0 < Jk , αk ∈ 2πT. In action-angle variables the Hamiltonian becomes

H =
∑
k∈�∗

ωk Jk + √
εH1(J, α) . (18.16)

The precise form of H1 is easily worked out, but not needed for our summary. The
equations of motion are then

α̇k = ωk + √
ε

∂

∂ Jk
H1(J, α) ,

J̇k = −√
ε

∂

∂αk
H1(J, α) . (18.17)

Clearly, the ω’s are the fast variables while the actions change slowly.
We impose the initial distribution, ρ(0), on phase space which evolves under

the flow (18.17) to ρ(t). ρ(0) is taken to depend only on J , the random phase
approximation, and one is interested in the distribution of slow variables at the
kinetic time ε−1t ,

ρε
t (J ) =

∏
k∈�∗

{(2π )−1
∫ 2π

0
dxk}ρ(J, α, ε−1t) . (18.18)
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Brout and Prigogine use second order perturbation theory for the Liouvillean,
which suggests that ρε

t (J ) evolves approximately by a diffusion process. The
computation is very readably explained in [28, pp. 36–60] and there is no need to
repeat. As net result they obtain a diffusion process on (R+)

3
with generator

L f (J )=γ
∑

k,k ′,k ′′∈�∗
(ωkωk ′ωk ′′)−1δ(ωk + ωk ′ − ωk ′′)δ(k + k ′ − k ′′)

×
(

∂

∂ Jk
+ ∂

∂ Jk ′
− ∂

∂ Jk ′′

)
Jk Jk ′ Jk ′′

(
∂

∂ Jk
+ ∂

∂ Jk ′
− ∂

∂ Jk ′′

)
f (J ).

(18.19)

(18.19) is a system of coupled diffusion processes. If we consider one repre-
sentative triple, (J1, J2, J3) ∈ (R+)3, then the diffusion process (J1(t), J2(t), J3(t))
moves along the line {(J1(0), J2(0), J3(0)) + λ(1, 1,−1), λ ∈ R}. The diffusion
process never exits the domain (R+)3, since the diffusion coefficient, J1 J2 J3 van-
ishes sufficiently fast towards the boundary.

According to (18.19) the first moment evolves as

d

dt
〈Jk〉t = 〈L Jk〉t . (18.20)

Taking  → ∞ and assuming the factorization 〈Jk ′ Jk ′′ 〉t = 〈Jk ′ 〉t 〈Jk ′′ 〉t one arrives
at a closed equation for 〈Jk〉t . As a check on consistency, it indeed agrees with the
Boltzmann transport equation (4.7).

The tricky part of the argument is the diffusion approximation (18.19). For
fixed , the limit ε → 0 in (18.17) is covered by the perturbation theory for
integrable systems, see e.g.(52) Chapter 5. Even if the initial phases are assumed
to be random, there is simply no diffusion approximation in sight. The motion of
the angles is quasi-periodic, thus much too regular for the purpose of diffusion.
One is forced to take with ε → 0 simultaneously  → ∞. Kinetic scaling requires
 = O(ε−1), which means to enter murky waters. It remains to be seen whether
there is some intermediate scale on which (18.19) is a valid approximation.

To my understanding, the transformation to action-angle variables easily
misses the central physical mechanism for the validity of the kinetic description. It
is the wave propagation in physical space, and its good spatial mixing properties,
which ensures that even in presence of a small nonlinearity the wave field retains
approximately the Gaussian statistics.

18.4. Solutions to (12.22)

We set

∂α∂βψ(k)= Aαβ , ∂α∂βψ(k ′)= Ãαβ , ∂α∂βω(k)= Bαβ , ∂α∂βω(k ′)= B̃αβ .

(18.21)
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Then (12.22) transcribes to

Aαγ B̃βδ + Ãαδ Bβγ = Aβγ B̃αδ + Ãβδ Bαγ (18.22)

and we have to find out all possible solutions under the condition that B and B̃ are
invertible. We multiply in (18.22) with (B−1)γ γ ′ and (B̃−1)δδ′ and sum over γ , δ.
Let us define

C = AB−1 , C̃ = Ã B̃−1 . (18.23)

Changing γ ′, δ′ back to γ , δ yields

Cαγ δβδ + C̃αδδβγ = Cβγ δαδ + C̃βδδαγ . (18.24)

In (18.24) we choose indices α �= β �= γ , where it is used that d ≥ 3, and we
set δ = α, resp. δ = β. Then Cαβ = cαδαβ . Correspondingly from α �= β �= δ and
γ = α, resp. γ = β, it follows that C̃αβ = c̃αδαβ . Thus

cαδαγ δβδ + c̃αδαδδβγ = cβδβγ δαδ + c̃βδβδδαγ . (18.25)

Setting α = β = γ = δ one concludes cα = c̃α and setting α = β, α = γ , β = δ

one concludes cα = cβ , α �= β. Combining both identities, there exist some con-
stant a such that

Cαβ = aδαβ , C̃αβ = aδαβ (18.26)

and consequently, using (18.23),

A = aB , Ã = a B̃ . (18.27)
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3. V. L. Gurevich, Transport in Phonon Systems, North-Holland 1986.
4. G. P. Srivastava, The Physics of Phonons, Adam Hilger, Bristol 1990.

1102



The Phonon Boltzmann Equation, Weakly Anharmonic Lattice Dynamics

5. J. Callaway, Quantum Theory of the Solid State, Academic Press 1974.
6. A. J. H. McGaughey and M. Kaviany, Quantitative validation of the Boltzmann transport equation

phonon thermal conductivity model under the single mode relaxation time approximation. Phys.
Rev. B69:094303 (2004).

7. C. J. Glassbrenner and G. Slack, Thermal conductivity of Silicon and Germanium from 3ÌK to the
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